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The brain is a notorious resilient system. After minor strokes, parts of the brain reorganize their structural connectivity
and essentially recover their original functions. Although some dynamical effects of brain network failures on their
activity have been found [1], most studies about resilient complex systems have so far focused on purely topological
properties. This is due in part to the inherent high-dimensionality of connectomes with dynamical nodes. However,
recent progresses suggest that the resilience analysis of many complex dynamical systems can be dramatically sim-
plified by dimension reductions resulting from mean-field approximations [2,3]. We extend these previous works to
study models of evolving networks in which nodes and edges weights are dynamical variables.

In our framework, the dynamics of a network with N nodes are described by N(N + 1) nonlinear coupled ODEs
that govern the fast evolution of the neural activity (e.g., firing-rates) as well as the slow adaptation of the connectivity
weights (e.g., Hebbian potentiation with saturation). Two global variables, the effective activity xe f f and the effective
weighted connectivity βe f f , are used for predicting the global evolution of the whole system. When the adaptive
connectivity is neglected, the resilience analysis can be easily done with bifurcation diagrams as in Fig. 1A. We prove,
both numerically and theoretically, that xe f f captures more accurately the behavior of the network than the usual mean
network activity. Structural perturbations, such as weak or strong attacks that respectively change weights or break
edges, result in a modification of βe f f . If the latter reaches some critical value, βc, the system undergoes a sudden
transition and loses its resilience (Fig. 1B). The addition of adaptive connectivity leads to the emergence of new
resilience patterns and often facilitates the recovery of the original network activity (Fig. 1C).
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Figure 1: (A) Typical bifurcation diagram for the effective model without adaptive connectivity, where β ,λ ,α are
dynamical parameters regulating the node dynamics while βe f f is effective weighted connectivity. (B) Global effec-
tive activity at equilibrium after weak (red line) or strong (blue line) attacks on static connections compared to the
theoretical hysteresis curve (dashed line) obtained from mean-field theory. (C) Same as (B) but with adaptive connec-
tivity. The square, stars, and triangles respectively denote the equilibria before an attack, just after an attack but before
adaption, and after adaptation. Green line: resilience enabled by adaptation. The numerical solutions in (B) and (C)
were produced from small random networks with 200 nodes and connectivity density p = 0.2.


