Step 5 : Repeat for each pair

Inferring higher-order co-occurrence patterns T
al d Si m pl ic i a I com p I exes frO an () statistically significant co-occurrences!
presence/a bsence data Nodes : Observed species

Links : Probabilistic dependencies in the occurrence

When the number of observations is low, the
& statistics is not distributed as a X2distribution

and step 4 will not give an accurate result.

[ op,qu In that case we need to generate the exact

distribution of the statistics for each pair.
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H: Species 7, 7 and k£ form a higher-order co-occurrence pattern.

How to infer higher-order co-occurrence patterns @ @ @ @

and simplicial complexes from presence/absence data? Site 1 | Site 2 | Site 3 | Site 4 | Site 5
@ Species A 1 0 1 1 0 _ A,.,B,,C_ ., AB |  AC | ,BC | , ABC
@ Species B 1 1 0 1 0 log(mijr) = u +uf +uy’ +up +uf” +uf” +ug” + g
:@; By using log-linear models and hypothesis testing! Species O 0 0 0 0 1 |

‘ABC t Contingency table : Count how many times a specific presence/ , . . . . ' . . ' o
;I absence situation appeared in the data A factor graph is a bipartite graph that encodes the relationship Using a Metropolis-Hasting sampling scheme and the total distribution
@ @ @ @ between random variables via factor nodes. The probability of drawing a of the factor graph, one can generate synthetic observations.
Species B =0 | Species B =1 Total . . . .
. . . . , , particular state for a set of random variables linked to the factor node is
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 Species A =0 Too = 1 To1 = 1 Toy = 2 tetermined b the factor [9 Instance 1 | Instance 2 | Instance 3 | Instance 4 | Instance 5

0 Species A 1 0 1 1 0 > Species A =1 r10 = 1 r11 = 2 Ty =3 etermined by the factor [2]. A 1 0 1 1 0
Q Species B 1 1 0 1 0 Total Tin =2 T,1 =3 N =5 B 1 1 0 1 0

+0 t1 C 0 0 0 0 1

With A, B,C € {0, 1},

Step 2 : Set hypotheses and corresponding log-linear models

e BH(A,B,C) The inferred simplicial complex is then compared with the original factor graph

P(A,B,C) = :
z TPR 104 1.01 1.0
H, : Species i and j occur independently. Contingency tables are instances of a multinomial distribution. 7 is the partition function., - . .
The log-likelihood of the distribution is given by - - 06
log(mi;) = u + uft + u? 0.4 0 o
I
log N! 4 Z z;;log(mi;) — N log(N) We design each factor such that its logarithm can be mapped to a log- > > v
H' ' QZZ]' — ’ , : . %0 02 04 06 08 10 0.00-0/ 02 04 06 08 10 % %.0
H; : Species i and j are correlated. + 0] linear model. For the previous factor graph, we could choose o T S FPR co |
N is the total number of observations; H(A, B,C) = i ABC + wa AB(1 = C) + ... + w1 B +wnC, ROC curves of the inferred links for 500 (left), 1000 (middle) and 2500

log(mi;) = u+ uf* + Uf T U?jB (right) instances with & varying from 0 to 1. The original factor graph

corresponds to the simplicial complex shown in step 6.

Lij are the cell entries in the contingency table; where wi. ....w, are real numbers
ey Wh, :

M4 are the expected counts in the multinomial distribution.

Datasets generously provided by Warwick Vincent (Université Laval),

Step 3 : Find expected values under H Results on two real datasets e Compte (NS, Quhee ), and Dol o (Ut L

We rewrite the log-likelihood of the sampling distribution as Species B =0 | Species B =1 38 thermokarsts (ponds created by the thawing of permafrost) in 185 sites in the forests of the Cote-Nord, Québec, Canada were
1 N . Z ( ot B) Nlog(V) Species A =0 m, 00 m 01 Northern Québec, Canada, were sampled. The identified microorganisms sampled. 70 bird species were identified.
og Ti; (u+u; +u; ) — Nlog(N), : _ _ : .
[L;; =45 > J J Species A =1 mM10 M1 were separated in 2611 taxonomic groups.
and design an iterative procedure to find the maximum likelihood estimates. 1M maximum likelihood estimates under Hy Co-occtrrence network of Co-oceurrence patterns of nesting

microorganisms in thermokarsts k2
using the exact distribution and a LU AR .
significance level a = 0.001 LT e S

birds using the exact distribution

and a significance level a = 0.01

Step 4 : Test Hyusing X° statistics

Using the X6 statistics, we measure how close our observations are from .
Independent taxons : 1591 Independent species : 11

the expected values under Hy. We compute the statistics with

Number of 1-simplices : 6589 Number of 1-simplices : 123

Number of 2-simplices : 0 Number of 2-simplices : 2
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We reject the hypothesis with a significance level « if the probability

of drawing X5 from a X distribution is smaller than cv. Finding 2-simplices with 38 observations is a hard problem since, in With 185 observations and the exact distribution of the statistics,

some cases, the maximum likelihood estimates do not exist. we were able to find higher-order co-occurrence patterns!




