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Abstract

Models for transmission of infections on complex

network structures are based on Markov stochastic

processes. This general and analytical approach

shows great potential in the context of STIs.

Objectives

To obtain analytical STIs models considering:

• elaborate epidemiological processes;

• complex and/or dynamic contact patterns; and

• stochasticity (i.e. non-determinism).

Background

Compartmental models divide a population

into compartments; two individuals in the same

compartment are considered indiscernible.
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In a SIR model, individuals may be Susceptible,

Infectious or Removed. More compartments are

added for infections with more elaborate stages.
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Exposed compartments are added for incubation

periods. Chains of infectious stages handle changes

in infectiousness and improve timing.
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Interacting infections:

one affects the transmission

of another. Peer-exchanged

information is an important

special case.

Numerous variations include vaccination, loss

of immunity and asymptomatic infection.

Background (cont’d)

Heterogeneity of the individuals is handled by

replicating the epidemiological compartments.
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genders, more are required

for behavioural groups, age

groups, ethnic groups, etc.

Mixing patterns determine contact rates among

groups; flow rates prescribe group transitions.

Structure matters: contacts

are not “well mixed” but are in-

stead constrained. In network

models, a link (line) exists when

a contact is possible. Structure

may change in time.

Deterministic compartmental models provide

mean values using ordinary differential equations.
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Stochastic models give, for each possible future,

the probability that it occurs. Benefits include

accounting for variability about the mean value

and allowing for random extinctions.

R

I

S
Infection

Recovery

Zero
Low

High

Probability
= state

The master equation governing the above system is
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Using the general notation (defined later), this becomes

rI = (-1, 1, 0) q+I (S, I, R) =
βSI

N
q−I (S, I, R) = 0

rR = (0, -1, 1) q+R(S, I, R) = µI q−R(S, I, R) = 0 .

Methods

• Represent the system with state vector x.

• Identify and quantify the possible events.

• Analyze with standard stochastic tools.

If event j, which takes x to x + rj, occurs at rate q±j (x) in the

forward/backward direction, then the master equation is
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For large systems, an estimate of the mean is obtained from
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Defining the matrices
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the probability distribution may be approximated as Gaussian
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C. W. Gardiner, Handbook of Stochastic Methods, Springer (2004).

State vector x should encode epidemiological

state, individual characteristics and structure.
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Since the amount of information is huge, focus is

placed on what matters epidemiologically.

Pair approximations are models where structural

information is limited to linked pairs.
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Example: there are k links between SM and SF, l

links between SM and IF, m links between. . .
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First neighbourhood approximations track all

the links of a single node (concurrency).
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Example: there are k isolated SM, l SM linked to

one SF, m SM linked to two SF, n SM linked. . .
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V. Marceau et al. PRE 82, 036116 (2010).
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Results

Case study 1: SI with first neighbourhood.
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The network structure is static.

Number of contacts 1 2 3 4

Number of individuals 160 80 40 20

Total 300 individuals, 5% initially infectious.
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Red: Monte Carlo simulations (numerical).

Black: full Markov process (analytical).

Blue: Gaussian approximation (analytical).
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Case study 2: SIS with first neighbourhood.
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The network structure is dynamic: S individuals

may switch a contact with

an I for one with a S.
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Color: different initial contact distribution (all 3

have the same average number of contacts).

Symbols: Monte Carlo simulations (numerical).

Lines: mean values from ODE system (analytical).

V. Marceau et al. PRE 82, 036116 (2010).

Different mechanisms could be implemented.

Results (cont’d)

Case study 3: two interacting infections (each

SIR) with first neighbourhood and types of links.
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Two static networks are overlaid: a

pathogen spreads on the first while a

fully immunizing intervention against

the pathogen spreads on the second.

F
ra

ct
io

n
of

in
fe

ct
io

u
s

Time

No delay before intervention

Delay = 1

Delay = 5

Delay = 10

0

0.2

0.4

0.6

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0 5 10 15

First network: Poisson or power law.

Second network: power law.

Symbols: Monte Carlo. Curves: ODE.
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Conclusion

Network models naturally consider concurrency

and a large variety of dynamical contact patterns.

As in standard compartmental models, Gaussian

approximations are often available at low cost.

Stochastic network models are sufficiently mature:

a new tool is available for STI applications.
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