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Future directions
•Dynamical networks that evolve in time.

• Co-evolution of networks and dynamics (retroaction of process
dynamics on network topology).

• Interaction of two propagative agents (e.g. disease and infor-
mation).

•Game theory on complex social networks

•Networks of networks.

Substantiation and discussions

This model highlights the community effect. We predict that,
versus an equivalent random network, a social topology will fea-
ture:

Higher epidemic threshold

• the epidemic threshold is systematically higher in a CS network
than in an ERN;

• both epidemic thresholds converge towards the same value if
the mean number of cliques per individual goes to infinity.

Longer relaxation times

• CS networks will take a longer time to reach equilibrium than
ERNs;

• a quantification of this effect can be approximated with perco-
lation arguments.

The wasted links pictured above are an inefficient way of spread-
ing the disease and are the cause of the discussed effects.

Possibility of intervention

• Taking social topology into account allows simulation of realis-
tic intervention scenarios during epidemics;

• e.g. school closings and vaccination of public health workers
both correspond to interventions on given cliques of individual.

Stochastic model and results

Initial conditions
A fraction I0 of individuals are randomly chosen to be infectious at
t = 0:

Sm(0) = (1− I0)gm and Cn,i(0) = pn

(
n

i

)
(I0)i (1− I0)n−i

Random networks
Our formalism can also describe propagation processes on random net-
works. In fact, to highlight the effect of a given topology on a given
process, we will use an equivalent random network.

Equivalent random network (ERN): network with the same de-
gree distribution as the original, but where all links are connected ran-
domly. In order to use the same formalism for an ERN, one sets:

• pn = δ2n and ε = 1 (cliques thus become simple links); and

• {gm} is chosen equal to the original degree distribution.

Results

Community Structure (CS) versus ERN

TOP: ODE integration (continuous lines) and analytical stable state (dotted line) ver-

sus numerical results (dots). BOTTOM: Analytical stables states (continuous lines)

and epidemic threshold (dotted line) versus numerical results (dots).

About the simulations:

SIS model of disease spread with infection rate τ = 0.0005, recovery rate r = 0.001

and initial conditions I(0) = 1%. Simulated on 20 000 networks of 25 000 nodes. Each

node has probability gm ∝ m−1 e−m/1.2 to participate in m cliques whose populations

follow a binomial distribution of mean 20. Each possible link within a clique exists

with probability ε = 0.8.

Philosophy and mathematics

Basics
A dynamical mean-field description of compartmentalized be-
haviors for both the network elements (individuals) and their re-
current topological patterns (cliques).

We follow the probability densities within two state ensembles:

•Cn,i , cliques whose population is n with i infectious; and

• Sm , individuals who are susceptible and linked to m cliques.

with two mean-fields of infection inflow:

•R(t), mean infectious neighbors per
clique for susceptible individuals

• ρ(t), mean infectious neighbors outside
of a given clique per susceptible.

R(t) = ε

[∑
n,i i(n−i)Cn,i∑
n,i(n−i)Cn,i

]
and ρ(t) =

[∑
mm(m−1)Sm∑

mmSm

]
R(t).

Master equations

dCn,i
dt

= τ (n− i + 1) (ε (i− 1) + ρ(t))Cn,i−1(t) + r (i + 1)Cn,i+1(t)

− τ (n− i) (εi + ρ(t))Cn,i(t)− riCn,i(t)
dSm
dt

= r(1− Sm(t))− τmSm(t)R(t)

Observables

〈i〉n =
1

npn

∑
i

iCn,i(t) [Disease prevalence in cliques of size n]

I(t) = 1−
∑
m

Sm(t) [Global disease prevalence]

Stable state, I∗: ρ∗ is obtained from its transcendental definition
using {S∗m} obtained from their master equation and {C∗n,i} fixed by

the conservation equation
∑
iCn,i = pn and a recursive solution:

C∗n,i+1 =
1

(i + 1)r

{
[τ (n− i)(iε + ρ∗) + ri]C∗n,i

− [τ (n− i + 1) ((i− 1)ε + ρ∗)]C∗n,i−1

}
.

Epidemic threshold, τc (phase transition in τ where non-null stable
state appears): given by the only real positive solution of:

µ2

ν

∑
n,i

pn

(ετc
r

)i i∏
j=0

(n− j)

 = 1

where µ2 is the mean number of excess cliques per individual and ν the
mean number of individuals per clique.

Our approach, based on the mean-field coupling of topological patterns and topological elements of a social structure , yields:

• time evolution of the state distribution of cliques and individuals, as well as the total epidemic size at any given time;

• analytical solution for the stable state (i.e. global state I∗ where total infections equal total recoveries); and

• analytical solution for the epidemic threshold (i.e. infection rate τc which allows a macroscopic final epidemic size).

Case study

Suceptible-Infectious-Susceptible (SIS) model of epidemic spread
on social networks featuring community structure.

Each individual belongs to m cliques, each containing n partic-
ipants (m and n are respectively taken from distributions {gm}
and {pn}). Links are shared with probability ε among pairs of
participants.

At a given time, each individual is in a specific state:

Susceptible individuals do not have the disease but can
get infected by contact with infectious at rate τ .

Infectious individuals have the disease and can transmit
it to susceptible neighbors at rate τ . They can also recover
from the disease at rate r.

For static properties of the topology (e.g. degree distribution,
clustering coefficient, giant component) see article by M.E.J. New-
man (2003).

Motivation

Most descriptions of propagation dynamics on networks are rooted
in the random graph paradigm:

• negligeable probability of loops; and

• negligeable correlation (in both close and long range) be-
tween the existence probability of two given links.

In other words: No evident structure in the network topology.

Is this approximation important?

Real networks are usually constructed on precise rules from which
structure emerges; e.g. the friend of my friend is my friend.
Furthermore, dynamics on networks is sensitive to network struc-
ture (as will be exposed in the following).

Our goal is to include a level of substructure in
our description of propagation on networks featuring
structured topologies.
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