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Summary
– We present a very general model of site and bond percolation

on random graphs that can be clustered and correlated in various
ways.

– Percolation properties are solved exactly for small graphs and
for “infinite size” graphs.

– Theoretical laboratory: the very general nature of the model
permits to investigate a wide range of questions related to the
influence of the structure of networks on dynamical processes
taking place on them (e.g., disease propagation, robustness). Two
applications illustrate our findings.

A stub matching scheme
– Each node belongs to a type (N : set of types of nodes).

– Nodes of type i occupy a fraction wi of the nodes.

– Each node has kα stubs of type α (E : set of types of stubs).

– The joint degree distribution Pi(k1, . . . , k|E|) ≡ Pi(k) prescribes
the number of stubs of each type that nodes of type i have.

– Hyperedges are formed by matching stubs according to a set of
arbitrary rulesR. Hyperedges can be any kind of arbitrary motif
and can have a fixed or random structure.

– The rules R define Rα(n1, . . . , n|N |) ≡ Rα(n), the distribution
of the composition (i.e., ni nodes of type i for each i ∈ N ) of the
hyperedge reached from a stub of type α. They also define {κµν},
the matrix prescribing the types of stubs that can be matched to
form an hyperedge.

– Graphs are generated by drawing nodes with stubs according to
Pi(k), and by randomly matching stubs according the rules R.
This process yields a maximally random graph ensemble sub-
jected to the constraints defined above.

Fig. 1: Illustration of the stub matching scheme. (top) Nodes are drawn ran-
domly according to Pi(k) and wi. (bottom) Stubs are matched according to the
rulesR. For instance, three black stubs are matched to form a triangle, and a blue
and a red stub are matched to form a directed edge (from the blue to the red stub).
There are 4 types of nodes, 5 types of stubs, and 4 different kinds of hyperedges.

Solving percolation
Small arbitrary motifs
To mathematically describe the percolation on the graphs generated
by the stub matching scheme, bond and/or site percolation on each
hyperedge generated by the rules R must be solved beforehand
[1].

– The distribution of the number of nodes of each type that can
be reached from a node of type i through a stub of type α is

Qiα(l|n) =

n∑
b=δi

Wiα(l|b)
∏
j∈N

(
nj − δij
bj − δij

)
p
bj−δij
αj

(
1− pαj

)nj−bj .
where Wiα(l|b) is obtained by iterating

Wiα(l|b) = Wiα(l|l)
∏
j∈N

(
bj − δij
lj − δij

) ∏
k∈N

(1− Tαjk)lj(bk−lk)

Wiα(l|l) = 1−
∑
r<l

Wiα(r|l)

from the initial condition Wiα(δi|δi) = 1 (one node of type i).

– The parametersn (hyperedge composition), {pαj} (node occupa-
tion probabilities) and {Tαjk} (edge occupation probabilities)
are specified by the rulesR.
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Fig. 2: (left) Example of an hyperedge that can be handled by this approach.
There are two types of nodes, and edges may be simple, multiple or directed.
(right) Validation of the analytical framework. Probability distribution qj(l)
of reaching l nodes of type j from a random initial node [i.e., projections of
Qiα(l|n)]. Six different sets of site/bond occupation probabilities were consid-
ered. Lines: theory; symbols: simulations.

Infinite size random graphs
Exact mapping to a graph ensemble with a locally treelike struc-
ture through the use of the generating functions [2]

θiα(x) =

∞∑
n=0

niRα(n)

〈ni〉Rα

n∑
l=δi

Qiα(l|n)
∏
j∈N

x
lj−δij
αj

where 〈ni〉Rα
=
∑∞
n=0 niRα(n).

– The relative size of the giant component is

S = 1−
∑
i∈N

wi

∞∑
k=0

Pi(k)
∏
α∈E

[
θiα(a)

]kα
where a ≡ {aµi}µ∈E ,i∈N is the stable fixed point of the system

aµi =
∑
ν∈E

κµν

∞∑
k=0

kνPi(k)

〈kν〉Pi

∏
α∈E

[
θiα(a)

]kα−δαν
with 〈kν〉Pi =

∑∞
k=0 kνPi(k).

– The percolation threshold corresponds to the point where a = 1
becomes an unstable fixed point of the system of equations above.

I. Hard-core random networks
We generate a maximally random graph ensemble with an arbitrary
degree distribution and an arbitrary k-core structure, and use it to
model bond percolation on real networks.

– The type of a node corresponds to its coreness, c.

–Ccc′:number of edges leaving a node of type c to a node of type c′.
–Kck:number of nodes of type c that have a degree k.

– A node of type c with a degree k has c stubs of type 2c that con-
tribute to its coreness and k−c stubs of type 2c−1 that do not
contribute.

– Stubs are matched randomly under the following constraints:

◦ contrib. stubs must lead to nodes with equal or higher c;
◦ non-contrib. stubs must lead to nodes with equal or lower c;
◦ two non-contributing stubs cannot be paired together.

Our random graph model performs better at predicting bond per-
colation on real networks than widely used models with the advan-
tage of requiring less information

[
O(k

3/2
max) instead of O(k2

max)
]
.
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Fig. 3: (top) Network construction procedure. Nodes of coreness 1, 2 and
3 (from lighter to darker) have contributing stubs (orange) and non-contributing
stubs (black) that are randomly matched under the constraints outlined above.
(bottom) Predicitons of the size of the giant component (orange) as a function
of the occupation probability of edges, T , using the matrices {Ccc′} and {Kck} ex-
tracted from the MathSci (left) and PGP (right) networks [3]. They are compared
to the results of bond percolation on the real datasets (black), and to the predictions
obtained by considering the degree distribution (blue), and the degree correlations
(green) solely. Lines: theory; dots: simulations.

Details of the mapping from the matrices {Ccc′} and {Kck} extracted from real
network datasets to the stub matching scheme:

wc =

∑kmax
k=c Kck∑cmax

c′=1

∑kmax
k′=c′Kc′k′

; Pc(. . . , k2c−1 = k − c, k2c = c, . . .) =
Kck∑kmax
k′=cKck′

κ2c′,2c−1 = κ2c−1,2c′′ = 1 with c′ < c ≤ c′′

κ2c,2c−1 = 1− κ2c,2c =
Ccc −

[
Ncwc −

∑cmax
c′′=c+1Ccc′′

][
Ncwc −

∑cmax
c′′=c+1Ccc′′

]
R2c(. . . , nc = 1, . . . , nc′ = 1, . . .) =

Ccc′

Nwcc

R2c(. . . , nc = 2, . . .) =
Nwcc−

∑cmax
c′′=c+1Ccc′′

Nwcc

R2c−1(. . . , nc′ = 1, . . . , nc = 1, . . .) =
Ccc′∑cmax

c′′=1Ccc′′ −Nwcc

R2c−1(. . . , nc = 2, . . .) =

∑cmax
c′′=cCcc′′ −Nwcc∑cmax
c′′=1Ccc′′ −Nwcc

II. Clustering regimes
Conjecture A [4]: clustering has opposite effects on the bond perco-
lation threshold and on the size of giant component depending of the
density of triangles in a graph.

– c̄(k): average number of triangles to which a node of degree k
belongs.

– Weak clustering, c̄(k) < (1− k)−1, leads to a higher percolation
threshold and to a smaller giant component than for an equiva-
lent unclustered graph.

– Strong clustering, c̄(k) > (1−k)−1, leads to a lower percolation
threshold and to a larger giant component than for an equivalent
unclustered graph.

Using our model, we design a graph that qualifies for the strong
regime, but whose percolation properties are those of the weak
regime.
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Fig. 4: (top) A graph contradicting Conjecture A (only a fraction of the edges is
shown). Each red node (degree 6) belongs to a motif of 4 red nodes, and to a motif
of 2 red nodes and 2 blue nodes. Each blue node (degree 10) belongs to a motif of
8 blue nodes, and to a motif of 2 red nodes and 2 blue nodes. Hence c̄(6) = 9

15 >
1
5

and c̄(10) = 24
45 >

1
9, which qualifies this graph for the strong clustering regime.

(bottom) Size of the giant component, S, as a function of the occupation prob-
ability of edges, T , for the clustered graph shown above (blue) and for its un-
clustered random counterpart (black). In contrast to Conjecture A, here clustering
increases the percolation threshold and decreases the size of the giant component.

This counterexample strongly suggests that the criterion on c̄(k)
may be a necessary condition but not a sufficient one.
We propose Conjecture B: weak and strong clustering regimes can
be uniquely determined from the existence of an effective local tree-
like structure. Investigation is under way to validate this new con-
jecture.
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