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Resilience
Ability to recover the original state in a reasonnable short
period of time.

Robustness - Opposite of vulnerability
Difficulty to modify the state of a system.



THE BRAIN IS RESILIENT
Plasticity, compensation, ...

The details and strategies are still unknown



Connectomics

Nodes
Neurons of activity x;(t)

Edges
Synapses of weight w;;(t)

Perturbations
Axi(t), Aw;j(t), edges/nodes
removal, ...




TOC

Effective formalism
O Description
O Application to neural networks

O Approximations and errors

Adaptive connectivity
O Special behaviors

O Measures of resilience



Effective formalism | Description

LETTER
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Universal resilience patterns in complex networks

Jianxi Gao'*, Baruch Barzel** & Albert-L4szI6 Barabési"**>

Resilience, a system’s ability to adjust its activity to retain its basic
functionality when errors, failures and environmental changes
occur, is a defining property of many complex systems!. Despite
widespread consequences for human health?, the economy® and
the environment*, events leading to loss of resilience—from
cascading failures in technological systems® to mass

the system loses its resilience by undergoing a sudden transition to a
different®®, often undesirable, fixed point of equation (1).

Although it is conceptually powerful, this analytic framework does
not account for the exceptionally large number of variables that in
r:ahty comml the state of a complex system. Indeed, real systems
linked via a complex set of

in —are rarely and are often

wughted, often directed, interactions'®!!, and controlled by not one

These li arerootedina ical gap: the

but by a large fan'uly of parameters, such

current analytical framework of resilience is designed to treat
low-dimen<in-~l models with a few interacting components’
“or multi-dimensic~' sterr
moments th

Effective formalism
Presented by Gao et al. 2016

as the welghts of all interactions. Hence, instead of a 1D function
JU6,), characterived by a single parameter 6, their state should be
dezcribe f coupled nonlinear equations that cap-
the system’s many components, and

“wv between tha.system’s dynap



Effective formalism | Description

N-dimensional complete system

N
xi = F(xi) + ZwijG(xi,xj)
=1



Effective formalism | Description

N-dimensional complete system

N
xi = F(xi) + ZwijG(xi,Xj)
j=1
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Effective formalism | Description

N-dimensional complete system

N
xi = F(xi) + ZwijG(xi,xj)
=

1-dimensional effective system

J'Ceff = F(xeff) + ﬁeffG(xeffr xeff)

B Zij wijx]'

Zi'kwi'w'k
J 1%
xeff=g(x) = _

Eij ZUZ']‘

’ ,Beff = S/P(S) = ZZ] w;

Z(x) = Neighborhood average of x



Effective formalism | Neural networks

1-dimensional effective system

Xeff = F(Xeff) + PeftG(Xef, Xef)



Effective formalism | Neural networks

1-dimensional effective system

Xeff = F(Xeff) + PeftG(Xef, Xef)

Neural dynamics - Hopfield model
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Effective formalism | Neural networks

1-dimensional effective system

Xeff = F(Xeff) + PeftG(Xef, Xef)

Neural dynamics - Hopfield model

=+ Yy A (- )]

1
1+eY

o(y) =
0 3 6 9

Xeff = —Xeff + PeffO [/\ (xeff - 4“)]



Effective formalism | Neural networks

Xeff = —Xeff + Petf0 [/\ (xeff - lu)]

Stationnary state X =0

Leff
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Effective formalism | Neural networks
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Effective formalism | Neural networks

Xeff = —Xeff + PeffO [/\ (xeff - 4“)]

Stationnary state X =0
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Effective formalism | Neural networks

Xeff = —Xeff + Peff0 [/\ (xeff - H)]

Good approximation for
O Homogeneous network
O Low inhibition
O High reciprocity w;j = wj;



ADAPTIVE CONNECTIVITY




Plasticity

Resilience
Ability to recover the original state in a reasonnable short
period of time.



Plasticity

Resilience
Ability to recover the original state in a reasonnable short
period of time.

Modified Hebb’s rule

Zbij = fcgl(gio]- - wi/‘(sz-) ; o; = g[/\(xi — ll)]



Recuperation

wij = 15 (0i0j — w,-jajz.) ; oi = o[A(x; — )]
].0 T T T T T T T P
- =1 /"
8t mmm 75 =07 .7 1
ol = g1 =0.68
& 5
S
4t ]
2} ]
0 T L
2 3 9 10




Measures of resilience

How to quantify resilience ?




Measures of resilience

How to quantify resilience ?

O Recovery time
O Energy of recuperation

O Maximum damage

dxeff

O Sensibility ap
eff




Measures of resilience | Time of recuperation

Recovery time
Time to return in the surroundings of the original state
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Measures of resilience | Time of recuperation

Left

Recovery time

Time to return in the surroundings of the original state
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CONCLUSION




Conclusion

Effective formalism

O Simple to use on neural dynamics.
%\f/f > { s
O Valid for homogeneous, low

inhibition and high reciprocity.

Resilience
O Introduce adaptive connectivity

O Recovery time is a good indicator of

catastrophe



Thank you

Collaborators

Patrick Desrosiers Nicolas Doyon Louis J. Dubé

dynamica.phy.ulaval.ca

Sentinelle Fonds de recherche
ord A

uhecas @CERVO

autaec

CRSNG
NSERC

e

fHols UNIVERSITE

I
5t g b




	Adaptive connectivity
	Conclusion

