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ollective behavior in network science?
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Juestion

Collective behavior and collective motion is
ubiquitous in the study of complex systems.

s it @ network science problem?

How would we know?



Juestion

Networks! But still more to do with the analysis...

J Stat Phys (2013) 153:270-288
DOI 10.1007/s10955-013-0827-4
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Flocking is a typical example of emergent collective behavior, experimental data. This distribution is the one with
where interactions between individuals produce collective pat- entropy (10).

terns on the large scale. Here we show how a quantitative micro- It should be emphasized that the maximum entrop
scopic theory for directional ordering in a flock can be derived is not a “modeling assumption;” rather it is the ¢
directlv from field data. We construct the minimallv structured  assumptions. Anv other model that accounts for the

In contrast to most networks, the connectivity in a flock of
birds is intrinsically dynamic—birds move and change their neigh-
bors. Thus, it may not make sense to talk about matrix of correla-
tions C;; or interactions J;; between labeled individuals. On
the other hand, the continuous and rapid change of neighbors
induced by motion implies that the interaction J;; between bird
i and bird j cannot depend directly on their specific identities but
only on some function of their relative positions.



Further motivation

- |s there a physical (i.e. Hamiltonian) formalism that
can capture canonical models of collective behavior?

- (similar to Topaz et al. (2015), but with TDA)



Approach

Study networks induced from simulated collective behavior

ifferent parameterizations of the generative model
ifferent ways of comparing networks over time
ifferent ways of generating the adjacency matrix
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The “Couzin model”
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The "Couzin model”

Repulsion
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The “Couzin model”

Attraction
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Four regimes of collective behavior

Highly parallel group Milling / torus
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Swarm

Swarm-like
behavior
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Milling / torus

Milling / torus
behavior

1.0 e
c é 1.5 1
o 0.8 - (]
® 5
‘= 0.6 1 £ 1.0
© —
© o
Q - >
o 0.4 g
8 o 0.5 -
—
G 0.2 g.
(@]
| .
0-0 1 1 1 1 o 0-0 | 1 1 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Time Time



Highly parallel group

Highly parallel
group
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Dynamic parallel group

Dynamic parallel
group o
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Dynamic parallel group

What is the
network here?
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What is the
network here?




cxtract graphs at every timestep

[0 create a

t = 350
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For example
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Results: Temporal Network Backbone

Remaining fraction
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Results: Change in “Spectral Leadership”
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Results: Decomposition and Coreness
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Approach

Study networks induced from simulated collective behavior

- Different parameterizations of the generative model
- Different ways of comparing networks over time
- Different ways of generating the adjacency matrix
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Comparing real networks
of collective behavior (coming soon)



netrd 0.2.0

pip install netrd I




Pull requests Issues Marketplace Explore

L] netsiphd / netrd P uUsedby v 1 @uUnwatch~ 8  Star 10  YFork 21

<> Code Issues 14 Pull requests 1 Projects 0 Wiki Security Insights

A library for network {reconstruction, distances, dynamics} https://netrd.readthedocs.io/en/latest/

D 753 commits 1 branch © 3 releases 22 16 contributors sks MIT
x sdmccabe Rename entropy to entropy_from_seq (#264) - Latest commit cb4@a35 2 days ago
s distance Correct documentation of dk-series (#263) 2 days ago
8 dynamics Voter noise (#229) 4 months ago
B8 reconstruction Adapt the naive transfer entropy reconstructor to our entropy utility... 3 days ago
Bm utilities Rename entropy to entropy_from_seq (#264) 2 days ago
B _init__.py Updated outer __init__ to not use wildcards. 5 months ago
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netrd: graph distance

How close (similar) are these two graphs?
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netrd: graph distance

How close (similar) are these two mugs?
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netrd: graph distance

How close (similar) are these two mugs?

How do their positions differ?
How do their volumes differ?
How do their temperatures differ?

How do their functions differ?

30



netrd: graph distance

How close (similar) are these two mugs?

How do their positions differ?
meters

How do their volumes differ?
liters

How do their temperatures differ?
degrees

How do their functions differ?
...ask someone at a café?
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netrd: graph distance

How close (similar) are these two graphs?
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netrd: graph distance
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Several distances from netrd (log-scaled)

T

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

01

02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:

: JaccardDistance
Hamming
HamminglpsenMikhailov
Frobenius
PolynomialDissimilarity
PortraitDivergence
OnionDivergence
QuantumSpectral)SD
DegreeDivergence
ResistancePerturbation
NetLSD
CommunicabilitySequence
IpsenMikhailov
NonBacktrackingSpectral
NetSimile

DeltaCon

33



Graph distances between G(t) and G(t+1)

Different graph distances
between networks at
tand t+]

Network, changing
over time




Graph distances between G(t) and Glt
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Approach

Study networks induced from simulated collective behavior

- Different parameterizations of the generative model
- Different ways of comparing networks over time
- Different ways of generating the adjacency matrix
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Tons more cool stuff to do

- |f we can extract these networks, we could apply tools from

Information theory to unravel t
patterns in maintaining the co

ne role of communication

lective behavior (message

passing, information storage/transfer, emergence, etc...).

- If not... maybe there isn't a "network science” for these
systems (which would be useful to know!)
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Network analysis of
collective motion

Vincent Thibeault
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