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A low-dimensional description of a high-dimensional complex system ? Paradox ?

“The Scream of Dimensionality”



E.g. : Logistic equations

About spin-glasses:
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mind. The natural systems are of enormous complexity, and it is clearly
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Abstract—/n this paper, we prove that any finite time trajectory of a given n-dimensional dynamical system can be
approximately realized by the internal state of the output units of a continuous time recurrent neural network with
n output units, some hidden units, and an appropriate initial condition. The essential idea of the proof is to embed
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First indicator of the low-rank hypothesis

We observe that many random graphs are described as

Random Expected weight Random
weight matrix matrix (W) noise matrix
w = o )+ R
Low-rank matrix L

Model Low-rank matrix L rank(L) ®(L)

G(N,p) NpiiT 1 L

_ 62 2 T L

Chung-Lu s BK 1

Degree-corrected stochastic block Ao (f?.‘,inl%;rut) < #blocks L

Soft configuration™ y'gT 1 %
5 _
S' random geometric uz (I_iin R;rut) of < 3% 1

1+LA/2

* Garlaschelli, Phys. Rev. Lett., 2009
** Gower, Linear Algebra Appl., 1985
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Impact on the random weight matrix

Hermann Weyl, Math. Ann., 1912 Ky Fan, PNAS, 1951
0irjo1(A+B) < oi(A) +0j(B)  V1<i,jitj-1<N,
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oi(W) =au((W) < Rz

“Noise strength”

“the singular values of W cannot deviate from those of (W) more than || R||2”
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Second indicator of the low-rank hypothesis : Rapid singular value decrease
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Third indicator of the low-rank hypothesis : low-effective ranks
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The low-rank hypothesis

It is the assumption that networks’ weight matrices have rapidly decreasing singular
values, implying low effective ranks.
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It is the assumption that networks’ weight matrices have rapidly decreasing singular
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Let’s verify it for real complex networks!
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What’s the consequence for dynamics on these networks ? I



Dimension reduction of dynamical systems is about aligning vector fields.

Complex network High-dimensional dynamics
x=1(x;V)
o 9
o) ° o w* -
[e] x
°© © Vector field A N
o} o o A
° o o © /
© o — a7t
o o (o) e o f
e} e 7
° o ad = S
FAN -~ 7 7
o A R"
X

l Reduction matrix

Mof = L
V4 > e &
p <
Alignment 7 3
%_r_r_or > /

¢/X=Mx 2 R

X = F(X; Structure?)
Low-dimensional dynamics

"



Choice of vector field F' : Least-squares

High-dimensional dynamics : & = f(z)
Low-dimensional dynamics : X = F(X) where X = Mz

Theorem (simplified)

The vector field F™* that minimizes the quadratic error between the projected dy-

namics p = f(p) with p = MTMax and the reduced dynamics in RN [M*TF(X)]
18

F*(X) = Mf(M*X).

Proof : Just use least-squares.



Choice of M and upper bound on the alignment error £¢(z)
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n : dimension of the reduced system
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Alignment error for dynamics on real complex networks

Third consequence :

Rapid singular value decreases can induce rapid alignment error decrease.
«+« Average alignment error (&) -+« Average upper-bound on E(x) +++ Rescaled singular values %1
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Induced low-dimension hypothesis
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A surprise : Higher-order interactions
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QMF SIS : i = —aw; + B(1 — 2:) 300 Wijay, i€ {l,..,N}.

Reduced QMF SIS :
X, = —aX, + B0 WXy — B0 Wik X, Xe, pe{L.n)
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The HOIs depend on the reduction matriz and the nonlinearity of the dynamics.



Conclusion

1. The low-rank hypothesis has been defined with three indicators along with its

impacts.

2. Many real networks have rapidly decreasing singular values,

leading to low effective ranks.

3. Alignment errors can rapidly decrease following the networks’ singular values.

4. Dimension reduction can lead to the emergence of higher-order interactions

that depends on the chosen observables and the nonlinearity of the system.
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Low?

How low ? The values of the effective ranks give a graded measure for that.

Low or high ? at most a sublinear growth O(N'~¢), with € € (0,1], as N — oo

(valid only for growing graph models)
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*Summarizes SI IIC in Thibeault et al., https://arxiv

T
1 N/2 N
X

.org/abs/2208.04848 (e.g., Theorem 3)
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Other effective ranks
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Dimension-reduction scheme




Graphs and other random graphs

Rescaled singular values oj/o1

0.6

0.4

0.2

0.0

Self-loops

Path
Hexagonal grid
Square grid
Cubic grid
Triangular grid
Wheel

Star

0.0

Rescaled index i/N

T T L
0.2 0.4 0.6 0.8 1.0

0.0 -

« Barabasi-Albert (m=1)
Barabasi-Albert (m = 2)
Barabasi-Albert (m = 5)

« Watts-Strogatz (k=2, p=0.1)
Watts-Strogatz (k =2, p=0.6)
Watts-Strogatz (k =10, p=0.1)

« Random regular (d = 3)
Random regular (d =5)
Random regular (d = 10)

0.0

0.2 0.4 0.6 0.8 1.0
Rescaled index i/N

23



Effective ranks vs. number of vertices
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Effective ranks vs. density
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Hypergeometric decrease

Theorem (Hypergeometric decrease (simplified))

Suppose that the singular values of matric W satisfy the inequality

(1 _l,i)c —2 _ 2 _ (1 _:Ei)c*—Q

F S < : Vie{l,..,N},
(1 + ¢*a;)° 21 (14 Cozy)™ : :

where x; = (i — 1) /(N — 1) and for some 0 < b, < b*, 2 < ¢, <, 0< (e < (.
Then,

N -1 N-1
* KR o < o Cos G
20*_3H(b,c,§)_ srank (W) _1+2C*_3H(b,c Cx)

where H(b,c,() := oF1(1,2b;2(c — 1); —(C), the Gaussian hypergeometric function.



