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A low-dimensional description of a high-dimensional complex system ? Paradox ?

�The Scream of Dimensionality�
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E.g. : Logistic equations

About spin-glasses:
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What about the �dimensionality� of complex networks ?

Singular value decomposition (SVD)

Orthogonal
matrix

Real matrix
rank W = r

Orthogonal
matrix

Diagonal
matrix

Exact for n = r

Optimal low-rank approximation

Eckart-Young
theorem (1936)

Weighted
Directed
Signed...

E�ective rank : how many singular values are signi�cant

e.g., the stable rank is srank(W ) =
∑r

i=1 σ
2
i /σ
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First indicator of the low-rank hypothesis

We observe that many random graphs are described as

Random 
weight matrix

Random 
noise matrix

Expected weight
 matrix          W

W = R 
Low-rank matrix L

Model Low-rank matrix L rank(L) Φ(L)

G(N, p) Np 1̂1̂> 1 L

Chung-Lu
‖κ‖2
2M κ̂κ̂> 1 L

Degree-corrected stochastic block Λ ◦ (κ̂inκ̂
>
out) ≤ #blocks L

Soft con�guration∗ yȳ> 1 L
1−L

S1 random geometric R2

µ2

(
κ̄in κ̄

>
out

)
◦ θ̄ ≤ 3 ∗∗ 1

1+Lβ/2

...
...

...
...

∗ Garlaschelli, Phys. Rev. Lett., 2009
∗∗ Gower, Linear Algebra Appl., 1985
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Impact on the random weight matrix

Hermann Weyl, Math. Ann., 1912 Ky Fan, PNAS, 1951

σi+j−1(A+B) ≤ σi(A) + σj(B) ∀ 1 ≤ i, j, i+ j − 1 ≤ N,

⇓

|σi(W )− σi(〈W 〉)| ≤ ‖R‖2︸ ︷︷ ︸
�Noise strength�

�the singular values of W cannot deviate from those of 〈W 〉 more than ‖R‖2�
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Second indicator of the low-rank hypothesis : Rapid singular value decrease

1

30%

Weighted directed 
soft configuration

R: Geometric

W = L = L
BE

rank L = 1
1   L

Degree-corrected
 stochastic block

W = L = L

R: Poisson

rank L #blocks

Directed S1

 random geometric

R: Bernouilli

W = L =
1 + L

1
FD

rank L 3
/2

10%
1

1

1

1
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Third indicator of the low-rank hypothesis : low-e�ective ranks

Weighted directed 
soft configuration
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The low-rank hypothesis

It is the assumption that networks' weight matrices have rapidly decreasing singular

values, implying low e�ective ranks.

Let's verify it for real complex networks !
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Experimental veri�cation for real networks

Many real complex networks have low e�ective ranks !∗

∗ Udell, Townsend, �Why Are Big Data Matrices Approximately Low Rank ?�, SIAM J. Math. Data Sci., 2019

What's the consequence for dynamics on these networks ?
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Dimension reduction of dynamical systems is about aligning vector �elds.

Emergence of 
higher-order 
interactions

W
Complex network

X = Mx F

n

N
x

x= (x;   )f W

M f

High-dimensional dynamics

Vector field

f

Optimal vector field

F = M M+f

X = F(X; Structure?) 

Reduction matrix
M

f

Low-dimensional dynamics

Alignment
error

X = M f (M+X;    )  

Low-rank 
hypothesis

Low-dimension 
hypothesis

Hypergraph
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Choice of vector �eld F : Least-squares

High-dimensional dynamics : ẋ = f(x)

Low-dimensional dynamics : Ẋ = F (X) where X = Mx

Theorem (simpli�ed)

The vector �eld F ∗ that minimizes the quadratic error between the projected dy-

namics ṗ = f(p) with p = M+Mx and the reduced dynamics in RN [M+F (X)]

is

F ∗(X) = Mf(M+X).

Proof : Just use least-squares.
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Choice of M and upper bound on the alignment error Ef (x)

Theorem (simpli�ed)

The alignment error E(x) for some x ∈ RN is upper-bounded by

E(x) ≤ 1√
n

[
‖V >n Jx(x′, y′)(I − VnV >n )x‖+ σn+1‖V >n Jy(x′, y′)‖2‖x‖

]
.

σi : i-th singular values of W

M = V >n : n-truncated right singular vector matrix (justi�cation, Eckart-Young)

Jx, Jy : Jacobian matrices evaluated at some point x′, y′

n : dimension of the reduced system

First intuitive consequence : E(x)‖x‖ ≤
σn+1√
n

Second consequence : Jx(x′, y′) = aI and n ≥ rank(W ) ⇒ Exact dim. red.
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Alignment error for dynamics on real complex networks

Third consequence :

Rapid singular value decreases can induce rapid alignment error decrease.
Rescaled singular values n

1
Average alignment error Average upper-bound on x
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Induced low-dimension hypothesis

Emergence of 
higher-order 
interactions

W
Complex network

X = Mx F

n

N
x

x= (x;   )f W

M f

High-dimensional dynamics

Vector field

f

Optimal vector field

F = M M+f

X = F(X; Structure?) 

Reduction matrix
M

f

Low-dimensional dynamics

Alignment
error

X = M f (M+X;    )  

Low-rank 
hypothesis

Low-dimension 
hypothesis

Hypergraph



16

A surprise : Higher-order interactions
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Examples

QMF SIS : ẋi = −αxi + β(1− xi)
∑N

j=1Wijxj , i ∈ {1, ..., N}.

Reduced QMF SIS :

Ẋµ = −αXµ + β
∑n

ν=1W
(2)
µν Xν − β

∑n
ν,τ=1W

(3)
µντXνXτ , µ ∈ {1, ..., n}

Kuramoto-Sakaguchi : żj = iωjzj +
∑N

k=1Wjk[zke
−iα − z2j z̄keiα]

Reduced Kuramoto-Sakaguchi :

Żµ = i
∑n

ν=1 ΩµνZν +
∑n

ν=1W
(2)
µν Zνe

−iα −
∑n

α,β,γ=1W
(4)
µαβγZαZβZ̄γe

iα

W(4)
µαβγ =

N∑
j,k=1

MµjM
+
jαM

+
jβWjkM

+
kγ .

The HOIs depend on the reduction matrix and the nonlinearity of the dynamics.
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QMF SIS : ẋi = −αxi + β(1− xi)
∑N

j=1Wijxj , i ∈ {1, ..., N}.

Reduced QMF SIS :
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Conclusion

1. The low-rank hypothesis has been de�ned with three indicators along with its

impacts.

2. Many real networks have rapidly decreasing singular values,

leading to low e�ective ranks.

3. Alignment errors can rapidly decrease following the networks' singular values.

4. Dimension reduction can lead to the emergence of higher-order interactions

that depends on the chosen observables and the nonlinearity of the system.



19

Acknowledgments

All details are in the manuscript : https://arxiv.org/abs/2208.04848

Some references : Valdano and Arenas, Phys. Rev. X, 2019

Udell and Townsend, SIAM J. Math. Data Sci., 2019

Thibeault et al., Phys. Rev. Res., 2020

Contact information : vincent.thibeault.1@ulaval.ca

Questions ?

Thank you for your attention !

https://arxiv.org/abs/2208.04848


20

Low ?

How low ? The values of the e�ective ranks give a graded measure for that.

Low or high ? at most a sublinear growth O(N1−ε), with ε ∈ (0, 1], as N →∞
(valid only for growing graph models)
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∗Summarizes SI IIC in Thibeault et al., https://arxiv.org/abs/2208.04848 (e.g., Theorem 3)

https://arxiv.org/abs/2208.04848
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Other e�ective ranks

Unweighted networks Weighted networks
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Dimension-reduction scheme
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Graphs and other random graphs
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E�ective ranks vs. number of vertices
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E�ective ranks vs. density
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Hypergeometric decrease

Theorem (Hypergeometric decrease (simpli�ed))

Suppose that the singular values of matrix W satisfy the inequality

(1− xi)c
∗−2

(1 + ζ∗xi)
b∗
≤ σi

σ1
≤ (1− xi)c∗−2

(1 + ζ∗xi)
b∗
, ∀i ∈ {1, ..., N},

where xi = (i − 1)/(N − 1) and for some 0 ≤ b∗ ≤ b∗, 2 ≤ c∗ ≤ c∗, 0 < ζ∗ ≤ ζ∗.

Then,

N − 1

2c∗ − 3
H(b∗, c∗, ζ∗) ≤ srank(W ) ≤ 1 +

N − 1

2c∗ − 3
H(b∗, c∗, ζ∗) ,

where H(b, c, ζ) := 2F1(1, 2b; 2(c− 1);−ζ), the Gaussian hypergeometric function.


