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Model building in Network Science
®

How we build models

o Epidemiology (COVID-19, etc); ‘\ o Forecasts;
o Neuroscience;
o Social networks;

® Hard to gain insight;

e Few data points.

e Intervention procedures;

e Fundamental principles;
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Model building in Network Science (revisited)
@
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Model building in Network Science (revisited)
@

A numerical Petri dish

o Epidemiology (COVID-19, etc); o Forecasts;
o Neuroscience;
o Social networks;

® Even non-interpretable ML models can inspire us to build better models;
o We can use them directly for prediction;

e They allow us to build controlled environments.

e Intervention procedures;

e Fundamental principles;
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Machine learning in dynamical systems
@

A couple of interesting papers to look at

® B.Lusch, N.J. Kutz, S. L. Brunton, "Deep learning for universal linear embeddings of nonlinear dynamics", Nat.

Commun. 9, 4950 (2018).

® J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, "Model-free prediction of large spatiotemporally chaotic systems from

data: A reservoir computing approach", Phys. Rev. Lett. 120, 024102 (2018).

® F A.Rodrigues, T. Peron, C. Connaughton, J. Kurths, Y. Moreno, "A machine learning approach to predicting

dynamical observables from network structure”, arxiv:1910.00544 (2019).

® (C.Shah, N. Dehmamy, N. Perra, M. Chinazzi, A.-L. Barabasi, A. Vespignani, R. Yu, "Finding Patient Zero:

Learning Contagion Source with Graph Neural Networks", arxiv:2006.11913 (2020).

®  And many more.
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https://www.nature.com/articles/s41467-018-07210-0
https://www.nature.com/articles/s41467-018-07210-0
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.024102
https://arxiv.org/abs/1910.00544
https://arxiv.org/abs/2006.11913
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Overview of our strategy
®

Assumptions
Time series X ~ M(G) Network G = (V,€) Time invariance
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Objectives

® Train a model M (G’; ®) such that M (G'; ®) ~ M(G")—ideally for any G’;
* M(G; @) is a graph neural network (GNN) with trainable parameters ©;
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Graph Neural Network

=

[GNN({o}, G)]

7

A graph neural network receives as its input the node features and the network;
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Graph Neural Network
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A graph neural network receives as its input the node features and the network;
e NN and AGG are both trainable neural networks;

* AGG aggregates the features of a node’s neighborhood locally;
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Graph Neural Network

=
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A graph neural network receives as its input the node features and the network;
NN and AGG are both trainable neural networks;

AGG aggregates the features of a node’s neighborhood locally;
Usually used for network embedding task and structure learning.
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Architecture for learning dynamical systems on networks
®

Time series data

®-000e

Time

Network data

‘ Activation \
®

® Inputs:
> States X (t) = (i(t)),
> Network G = (7/,€).
¢ Qutputs:
> GNN(X(1),G) = V() = (5:(1)),
> If z,(t) is discrete, then ¢;(t) is a transition prob. vector of node ¢ at time ¢ + 1;

» If z;(t) continuous, then y; () predicts the state of node 7 at time ¢ + 1.
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APPLICATIONS AND REsurTs: LEARNING EPIDEMICS ON NETWORKS



Simple contagion dynamics

Susceptible-infected-susceptible dynamics (SIS)

. 1.0 —
Discrete states . ===
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Infection =, SIS
= 0.51
_ ¢ g - = GNN
P(. - .|Z) =1-0-8 'g B Infection (S — 1)
5 0 Recovery (I — S)
Recovery &
P(O—Q) =" 00"
0 25 50

Number of infected neighbors ¢
Training specifics:
SIS with 8 = 0.04, v = 0.08; Barabdsi-Albert network with [7| = 1000 nodes and (k) = 4; GNN model with

|®| ~ 5000 parameters; Training dataset size of 10000 time steps.
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Complex contagion dynamics

SIS dynamics with non-monotonic infection function (NM-SIS)

1.0
Discrete states _ ~ s
+~
zi(t) € {©,0} = \ == G\N
E \\ [ Infection (S — I)
S (§ covery
Infection (Planck-like) é 054 B Recovery (I — )
1 A =
P )= g
(. - .l ) Z(fl) e—nt — 1 .‘2 \\
=
Recovery & \\;
0 25 50

Number of infected neighbors ¢
Training specifics:
NM-SIS with n = 10, v = 0.08; Barabasi-Albert network with |7'| = 1000 nodes and (k) = 4; GNN model with

|®| ~ 5000 parameters (same as SIS); Training dataset size of 10000 time steps.
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Test case: Reconstructing the bifurcation diagrams

®
Bifurcation diagrams on Erd§s-Rényi networks
Simple Complex Interacting
1.0 1
0 —o— SIS —0=— NM-SIS e00009
® =@= GNN =@= GNN ®
= e®® e (]
L 0.51 ° 1
< e °
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o, == GNN
0.0'Q . peoe
2.5 5.0 2 4 6 . 5.0
Average degree (k) Average degree (k) Average degree (k)

Simple: SIS, Complex: Non-monotonic SIS, Interacting: SIS-SIS dynamics

We sample 100 Erdds-Rényi networks of size N = 2000 with different (k) and use the GNN to predict the

prevalence.
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Metapopulation dynamics: Preliminary results

Metapopulation SIR dynamics on weighted networks

Continuous states 10

(55350 750) € .12

*

Dynamical system

$j = =55 2 (i)

Fraction of recovered

ij = —vij + 852 %a(ik) =Q==Meta-SIR

= i —&= GAN
0.0
N _ _ i N. 0.2 0.4 0.6 0.8 1.0
a(i;) =1— (1 - B/N;)1™ Fraction of edges
Training specifics:

Metapopulation SIR with 3 = 1.08, v = 0.13; 10 Barabasi-Albert networks with |7| = 100 nodes, (k) = 2,
Nj ~ N (10%,1), wjp ~ U(0,100); GNN model with |®| ~ 400 000 parameters; Training dataset size of 1000

time steps.
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Conclusion

Take-home message
1. Graph neural networks can mimic epidemic spreading;
2. Highly versatile (contagion dynamics, metapopulation, weighted networks, etc.);

3. If you have network data with time series, consider using our approach’.

Perspectives
1. Other systems and datasets;
2. Generalized structures (multiplex, simplicial complexes, etc.);

3. Various applications (network defects detection?, resilience analysis, etc.).

LCodes available soon via GitHub.
2 Detecting structural perturbations from time series with deep learning, arXiv:2006.05232
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https://arxiv.org/abs/2006.05232

Thank you

Special thanks to my collaborators:
E. Laurence (edwardlaurence.me)

A. Allard (antoineallard.info)

To contact me:

Email: charles.murphy.1@ulaval.ca

Pre-prints:
Main paper: Deep learning of stochastic contagion dynamics on complex networks, arXiv:2006.05410.

See also: Detecting structural perturbations from time series with deep learning, arXiv:2006.05232.

GitHub:

Available soon.
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