
Step 1 : Fill a contingency table for each pair 

Step 2 : Set hypotheses and corresponding log-linear models

: Species i and j are correlated.

Step 3 : Find expected values under 

By using log-linear models and hypothesis testing!

How to infer higher-order co-occurrence patterns
and simplicial complexes from presence/absence data?

We rewrite the log-likelihood of the sampling distribution as 

and design an iterative procedure to find the maximum likelihood estimates.

Inferring higher-order co-occurrence patterns 
and simplicial complexes from presence/absence data
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Step 4 : Test statisticsusing

Contingency tables are instances of a multinomial distribution.

The log-likelihood of such distribution is given by

N is the total number of observations;

are the expected counts in the multinomial distribution.

Contingency table : Table in which we count how many times a 
specific presence/absence situation appeared in the data.

Using the      statistics, we measure how close our observations are from the 
expected values under     . We compute the statistics with   

: Species i and j occur independently.

are the maximum likelihood estimates underWhere .
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are the cell entries in the contingency table;
where :

We reject the hypothesis with a significance level     if the probability of 
drawing     from a     distribution is smaller than   . 

,

Step 5 : Repeat for each pair

Step 6 : Repeat for each triple with higher-order log-linear models

The only extra steps are to find the new log-
likelihood and set the appropriate hypotheses.

In that case we need to generate the exact 
distribution of the statistics for each pair.

Repeat this procedure for the highest possible order!

Nodes : Observed species
Links : Probabilistic dependencies in the occurrence

By repeating for each pair, we infer a network of 
statistically significant co-occurrences!

: Species i, j and k are dependent through pairwise dependencies.

We obtain a simplicial complex with higher-order 
co-occurrence patterns!

: Species i, j and k form a higher-order co-occurrence pattern.

Validation of the inference method with a generative model

Using a rejection sampling scheme and the total distribution of the 
factor graph, one can generate synthetic observations.

A factor graph is a bipartite graph that encodes the relationships 
between random variables via factor nodes. The probability of 
drawing a particular state for a set of random variables linked to the 
factor node is determined by the factor [2]. 

One can infer a simplicial complex from synthetic data and compare 
its structure to the original simplicial complex. 

We design each factor such that its logarithm can be mapped to a log-
linear model. For the previous factor graph, we could choose

where are real numbers.

,

where H(A,B,C) is an energy function and Z is the partition function.

With ,
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If designed carefully, a factor graph can be mapped to a simplicial complex.

When the number of observations is low, the 
statistics is not distributed as a     distribution and 
step 4 will not give an accurate result. 

Results on synthetic and real datasets

Synthetic data 

From the following simplicial complex representation 
of a factor graph, we generated 100 presence/absence 
matrices with 1000 observations of the variables. 

Real data 
This dataset comes from the Québec Breeding Bird Atlas 2019 in which
115 species of birds have been identified on 1382 sites. From this data set, 
we were able to extract a simplicial complex with the following structure :

We then inferred 100 simplicial complexes. The number of instances that produced specific 
numbers of false/true positives are shown in the following histograms for 1 and 2-simplices.   


