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Summary

We introduce a large class of scale-free benchmark graphs
for overlapping community detection algorithms.

The graphs and associated overlapping ground truth com-
munities are produced by a realistic stochastic growth pro-
cess that generalizes preferential attachment.

This organic approach to benchmarking allows us

• to generate a wide range of community structures;

• to identify qualitative structural regimes easily;

• to analyze the strengths and weaknesses of an algorithm
at a glance.

The benchmark in a nutshell
We generate graphs using a modified version of
the Structural Preferential Attachment
(spa) process [1-2]. This produces graphs
with an overlapping community structures, and
scale-free distributions of community sizes, node
memberships, and degrees.

How to generate SPA graphs?

While the graph has fewer than N nodes,

1a. Introduce a new node with probability q, and
a new community with probability p.

OR

1b. Increase the size (membership) of an existing
community (node) with complementary prob-
ability. Select the community (node) prefer-
entially.

2. Create a new internal link with probability
∝ r(1− p). Repeat.

Using SPA as a benchmark

spa produces realistic networks with known
community structures.

One can use overlapping community detection
algorithm on these networks to try to identify
the ground-truth communities.

Using an information theoretic measure (NMI)
to compare detected and ground-truth commu-
nities, it is then possible to quantify how suc-
cessful the algorithm is in recovering the under-
lying structure.

Graph properties
The structural properties of the graph (e.g. clustering coefficient, degree) are functions of the input parameters
(p, q, r,N), rather than imposed directly. These properties vary smoothly with the parameters.
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A subset of properties for fixed values of (N, r).
Similar behaviors are obtained for all (N, r) pairs.

Relationship between (p, q,N, r)
and the expected running time.

Structural classes
Mathematically, each point (p, q, r,N) can be embedded in a property space.
Partitioning this space allows us to identify qualitatively different structural regimes.

Avg. degree Clustering Assortativity Max. coreness Max. comm. size. Max. memberhips Excess density Overlap

N = 5000, p = 0.10, q = 0.05, r = 1

N = 5000, p = 0.30, q = 0.15, r = 1

N = 5000, p = 0.85, q = 0.85, r = 1

N = 5000, p = 0.45, q = 0.60, r = 1

N = 5000, p = 0.75, q = 0.55, r = 1

N = 5000, p = 0.05, q = 0.85, r = 10

N = 5000, p = 0.85, q = 0.20, r = 10

N = 5000, p = 0.75, q = 0.10, r = 10

N = 5000, p = 0.70, q = 0.80, r = 10

N.B. The property space is not the (p, q, r,N) space; the coordinate of a point is given by 20 + loosely
correlated properties (e.g. average degree, partition density). A non-euclidean metric defines the distance
between each pair of points.

Case study: OSLOM
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We applied the OSLOM algorithm [3] to our
benchmark for multiple (p, q) pairs (fixed

N, r).

OSLOM performs poorly whenever p, q are
small, i.e. for dense, clustered networks with

large communities (left).

More importantly, we observe transitions in
detectability along multiple trajectories in

the configuration space (right).
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Case study: Algorithms at a glance
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Testing an algorithm for every point of the
configuration space is time consuming,
because one must

• generate multiple graphs for each combi-
nation of parameters;

• apply the algorithm to these graphs.

Fortunately, the strengths and weaknesses
of an algorithm are easily captured by
studying its behavior for a small subset
of the possible configurations.

To the left and right, we show the average
accuracy (NMI) of 4 algorithms, for repre-
sentative networks of the 9 structural classes
identified in the above box (longer leaf =
better score). Their overall average score is
shown in the center.

We see that Infomap is the most versa-
tile algorithm (best overall score), but that
OSLOM is a reasonable alternative
for highly clustered networks, with few com-
munities. BigCLAM and COPRA are out-
performed by Infomap in all regimes.
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Further information

Visit us at

www.spa-networks.org
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