Functional resilience in dynamical complex networks
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Summary Resilience of networks Adaptive connectivity

The brain is a notoriously resilient system. Although dynamical effects Stabilit [ve; o .
on the brain activity resulting from failures of its network have been abILLy analysls Critical perturbatlon

found [1], most studies about resilient complex systems have so far We study the stability of the effective system. - After an attack, we let the system recover using its adaptive connectivity rule.
focused on purely topological properties.

O There is at least one fixed point and at O Attacks result in a change of Beg .

O Ber is driven by the adaptive connectivity until a steady-state is reached.

O We present a model of dynamics on network with connectivity most three fixed points. ! - - - -
adaptation to study resilience of neural networks. \

O Three fixed points emerge at aABeg > 4

O An effective formalism accurately describes the functional and and Ay > 2. i a(j)rflfe <ﬁ>;ed point | O Loss of resilience happens if the system is unable to recover its initial activity z.4
structural states of neural networks. - ) and structure Seg.
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New resilience patterns emerge from the recovery of the system. One fixed point
Teff > U
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O Ratio of characteristic times
influences greatly the recovery

1

T=1
. . mmm  [dges removal .
Consider a graph composed of n nodes (neurons) and m directed edges i Analytic solution |  For a given set of parameters, the system

(synapses). At time ¢, node 7 has activity y;(¢) while the weight of the i “ | shows a hysteresis region with three fixed

edge from j to iis w;(t). points, two of which are stable. Left figure | -
i i Influence of the ratio of characteristic times.

O Analytical description of the hysteresis An initial state (black circles) is attacked
(black star). Then, the system recovers until
steady-state is reached (squares).

Firing-rate model
The activity of each node evolves according to the firing-rate model:

region.

9 ' ' 3 0 12 14 O Effective description independent of the

1 attack strategy
: 1 . . -
Yi = Ty (—yi + Qo [)\( Zj WijYj — ,u)D o(y) = o v Top figure Deft

Comparison of the analytical solution and

numerical simulations of the dynamics on

random graphs of size n = 100 and density p = Validity Of the approximation I:Utu re WOrkS

Adaptlve COnneCtIVIty dynamlcs 0.2. During a rescaling attack, each edge's

S . The effective formalism approximates the
Each excitatory edge can adapt according to Hebb's rule with weight is rescaled. On edge removal, a fraction , . s . . .
s y €dg p & of edges are removed from the graph. network to an effective node. We have tested O To quantifiy the resilience using our formalism. Promising
saturation:

this approximation for different structures. candidates are:

Wij = 7‘51 (Uigj — VUJz'jUJQ-) : 0; =0 A(Zj WijYy — M)} O Recovery time
' O Excellent fit for homogeneous connectivity.

. ll\/[odularzlpin _or, Pout = 0.1 O Size of the hysteresis region
O Weights are bounded O Weights deteriorate if inactive | mmm Scale-free | O Poor approximation for heteregenous O Attractiveness of the fixed points

Analytic solution
O The ratio 7 /Ts will prove to be an important parameter. ' graphs.

O To obtain an effective and analytical description of the recovery process.
Effective formalism Loft figure

In 2016, Ref. [2] proposed an effective formalism to describe the ! " | Comparison of the effective approximation for networks
of size n = 100 with modular structure and scale-free

degree distribution.

O To include inhibition in our model. To do so, we need to

dynamics of a network under perturbations. O Define an adaptive connectivity rule for inhibitory neurons

5 10 12 14 . . .
O Unidimensional description of N-dimensional systems. Best 0 Extend the formalism to competitive dynamics

O Single focal node description and single effective structural parameter.

We define the input activity z;(f) of node i as | z;(t) = >, wi;(t)y;(t)
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