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Résumé

Nous avons étudié deux mesures de changement dynamique sur des séquences tem-
porelles, la similarité dynamique (DS) et le flot d’information integré a base de cumu-
lants (ITF). Des séquences temporelles synthétiques de controle ont été produites avec
un réseau neuronal asymétrique a délai. Le pouvoir discriminatoire entre différents
niveaux de chaoticité du IIF s’est averé plus fort sur ces séquences. Ce sont les
fluctuations statistiques de la DS, par contre, qui étaient les moins importantes sur
des données stationnaires. L’influence de bruit gaussien additif sur les deux mesures
était négligeable. Nous avons calculé les deux mesures sur toutes les voies de 25
enregistrements EEG de 5 patients souffrant d’épilépsie focale. Des fluctuations sig-
nificatives préictales de la DS ont été observées pour 8 crises cliniques sur 15 versus
4 sur 15 pour le IIF. Toute crise anticipée par ces fluctuations I'était aussi par des

changements spectraux précédant la crise.

Greg McDonald Louis-J. Dubé
Candidat Directeur de recherche



Abstract

Two methods of measuring dynamical change on time series, dynamical similar-
ity (DS) and cumulant-based integrated information flow (IIF), were studied. To
compare the measures under controlled conditions, artificial time series of chaotic
data qualitatively similar to EEGs were generated using an asymmetrical neural net-
work with delays. IIF was found to discriminate different degrees of chaos better
than DS on these data. On stationary data, however, DS fluctuations were smaller.
Additive noise had little effect on the performance of either measure. The measures
were subsequently computed on all channels of 25 electroencephalographic (EEG)
recordings from 5 patients with focal epilepsy. Significant preictal changes in DS
were observed before 8 out of 15 clinical seizures versus 4/15 for IIF. Seizures antici-
pated by these measures could also be anticipated by changes in the power spectral

density.
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Candidate Thesis Advisor
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Chapter 1

Introduction

1.1 Dynamical Systems and Dynamical Change

A dynamical system is one whose time evolution is defined in some phase space, a
vector space every point of which corresponds to a possible state of the system [37].
Deterministic systems are those whose time evolution is defined by a set of equations
free of any stochastic or random terms (dynamical noise). Given any initial position
in the phase space, those equations can in principle be solved to yield the system’s
subsequent trajectory or orbit in phase space [60].

Our topic is measures of dynamical change. It is important to understand what is
meant by dynamical change and how this might differ from the idea of nonstationarity.
A more formal definition of a dynamical system [30] will clarify the difference. We let
x = x(t) € R, a vector valued function of the independent variable ¢, denote a point
in an n-dimensional phase space corresponding to the state of the system at time t.
The evolution of continuous-time dynamical systems is commonly defined by a set of
first order differential equations

‘ji—j — F(a.1). (1.1)
where the vector field F' : U + R — R” is a smooth function defined on some subset
U C R” of the phase space. The vector field F' is said to generate a flow ¢, : U — R"

in phase space.



The behaviour of a system can be understood in terms of the geometrical and
topological properties of this flow, which typically depends on the values of one or
more parameters and may depend explicitly on time. Guckenheimer and Holmes take
this approach in their classic text on dynamical systems theory [30].

Two types of dynamical change can be identified: shifting of the flow itself as a
result of changes in the system parameters and movement between distinct regions
of a globally stable flow. The first type involves change in the equations of motion of
the system via the control parameters or, if the equations are nonautonomous, the
simple passage of time deforming the flow. In the second type of change, the equa-
tions describing the system are unaltered. Movement between multiple attractors of
a deterministic chaotic system as a result of perturbations to the sytem is not an
example of the latter; the “external force” which perturbs the system is not present
in the system initially. A proper example is provided by systems displaying intermit-
tency, i.e. chaotic behaviour interspersed with bursts of near periodicity of varying
duration. At a given observational time scale, there may be no way of determining
which type of dynamical change a system is undergoing.

A random process is said to be strict-sense stationary if its statistical properties
are invariant to a shift in the origin of time. Wide sense stationarity requires a
constant mean and that the autocorrelation depend only on a lag [62]. Stationarity
is a precondition of most methods of time series analysis, linear and nonlinear [37].
When this condition cannot be satisfied on an entire series, the method of sliding
windows is often used; both measures presented in this thesis use this approach.
Within any given window of data, the system is assumed to be stationary. This
imposes significant constraints on the choice of window length and hence on the
statistics of these measures.

A system undergoing dynamical changes of either type identified above is at least
strict-sense nonstationary. The measures we examine here either began life as mea-

sures of nonstationarity (similarity) or have been used to detect stationarity (infor-



mation flow). As measures of dynamical change, however, we expect more from these
measures; we want measures which reflect the extent of differences in the flow or be-
tween different regions of the flow. This is satisfied by their theoretical underpinning,
as the similarity measure explicitly compares reconstructions of the flow and the in-
formation flow measure does so implicitly by estimating cumulants of the distribution

of states on the flow in any given window.

1.2 Nonlinear Time Series Analysis

Experimentally, our access to a system’s dynamics, i.e. the equations governing its
evolution in time, is through the portal of measurements. When these measurements
are repeated at regular intervals, they form a time series. From a dynamicist’s point of
view, this vector of data encodes the entire dynamics of the system—often distorted
by some measurement function and invariably contaminated by noise—so that in
principal this dynamics can be recovered by the embedding process [74,80]. This
reconstructed phase space is the starting point of most methods of nonlinear time
series analysis. It is explicitly so in the dynamical similarity measure we study in
Chapter 3 and implicity in the cumulant-based information flow (Chapter 4). These
methods have grown out of the explosion of interest in nonlinear systems, in particular
those displaying deterministic chaos. It is the presence of nonlinear terms in the
equations of motion which make these systems nonlinear. Additional nonlinearities
are often introduced by the measurement function. Special methods, such as those
described later involving surrogate data, are required to separate these measurement
nonlinearities from those of the underlying system.

We will present two measures of dynamical change, both of which are sensitive
to changes in both linear and nonlinear structure underlying time series. First, we
examine dynamical similarity, which compares clouds of points in reconstructed phase
space to the cloud representing a reference dynamics. Statistical independence be-

tween the past and future of a process are reflected in the cumulant-based integrated



information flow, the second measure we consider. Both are measures in that the
computed quantities allow us to gauge the extent of the change rather than just de-
tect whether some change has occurred. In principle, thresholds on the measure and
in time can be used to detect significant dynamical changes, but we will see that this
is not always easy to implement.

Before applying these measures to real data, experiments on artificial time series
allow us to explore the strengths and weaknesses of each measure. An asymmetrically
connected Hopfield neural network with delay was used to generate our synthetic time
series. In a series of papers by V. Bondarenko, this model was shown to produce
solutions qualitatively similar in many respects to EEG recordings.

Throughout the following text, considerable attention is paid to implementation
details. Much of what we have to present involves numerical experiments on artificial
time series, computation of various measures on real data and automatic data reduc-
tion. Algorithmic ambiguity and differences in implementation could have a strong
influence on results, so in the interest of reproducibility, we have tried to be as explicit

and clear as possible.

1.3 Anticipation of Epileptic Seizures

One direct result of the recent period of intense research into nonlinear systems and
methods of nonlinear time series analysis has been a renewal of interest in the problem
of epileptic seizure anticipation from EEG recordings [46, 48, 52]. The goal is to
identify, from these signals, changes in the brain dynamics which eventually lead to a
seizure. Timely detection of these changes could eventually make it possible to steer
the brain away from the seizure by weak pharmacological or electrical perturbation
of the system. At the very least, patients would be aware of the upcoming seizure,
which would greatly alleviate the anxiety of never knowing when a seizure will strike.

Epilepsy is one of the most common neurological diseases, affecting about 1% of

the population at some time in their life. It is the propensity to have seizures, defined



as “transient paroxysms of excessive discharges of neurones” in the brain “causing a
clinically discernable event”. If this discharging is only short-lived, it will produce
an interictal spike in brain activity, observable on the EEG and characteristic of
an epileptic brain. In Fig. 1.1, we show a 30sec segment of EEG recording far
from any seizures. Fig. 1.2, on the other hand, shows the onset of a clinical seizure
about 45 min later in the same intracranial recording. The transition is fast and the
violence of the synchronous discharging that characterizes a seizure is astonishing.
Although these discharges are reasonably well understood on a cellular level, the
larger-scale mechanisms producing and maintaining seizures have still not been fully
elucidated [25]. Doing so is a concurrent goal of those working on seizure anticipation,
as the measures being used have the potential to shed light on seizure dynamics.
Conversely, a better understanding of these dynamics may allow methods of time
series analysis to be tailored to seizure anticipation or suggest promising combinations

of measures.

Figure 1.1: This 30 second segment of intracranial EEG recording typifies interictal (be-
tween seizure) behaviour. Seemingly random fluctuations are superimposed on slower,
larger amplitude oscillations. This particular example was taken from the start of amy-
sez01, channel LAL
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Again from the dynamicist’s point of view, EEG recordings are assumed to capture
the “dynamics of coupled nonlinear interactions between neuronal populations.” [45]
The methods of nonlinear time series analysis applied to these signals should thus al-

low characterization of the underlying dynamical processes and detection of patterns



Figure 1.2: The line running top to bottom in this figure indicates the clinician identified
start of a clinical seizure, the first in amysez01, channel LA1. Prior to that, the recording
looks like Fig. 1.1. A characteristic 10 Hz oscillation develops at the onset of the seizure,
which we see as a “darkening” of the plot at this time scale. This is followed by the high
amplitude fluctuations.

< 1000

E

o 500

:: O,W b )l ““"I ‘ll" " L I ML ‘l_“‘, I |“‘\ i P |

o

N

%  -500 1

>

g

®  .1000 ‘ ‘ ; ; |
475 48 48.5 49 49.5 50

Time from start of recording (min)

that would not be revealed by traditional linear methods. The situation is greatly
complicated in reality by the simultaneous presence of noise, measurement nonlinear-
ities and stochastic processes which may be operating in parallel with deterministic
processes. A thorough review of work on the problem of characterizing neurodynamic
changes before seizures and seizure anticipation has been written by Le Van Quyen et
al. [45]. Anticipation times reported with nonlinear measures have been on the order
of 5 min. More recently, significant changes in measures of neuronal synchrony have
indicated preictal periods extending 20 min prior to seizures.

On a data set consisting of 25 long multi-channel EEG recordings of intracranial
and scalp electrodes on five patients with epilepsy, we have studied the variations in
the similarity and information flow measures preceding clinical seizures. Particular
attention has been paid to the specificity of these variations to the so-called “preictal
period”, contrary to almost all existing publications concerning this problem. We
compare the performance of the two measures against each other but also against lin-
ear methods of time series analysis. The question of interest is whether the strengths
of these two measures, which are motivated by very different theoretical considera-
tions, are complementary and whether they do reveal preseizure dynamical changes

that linear measures miss. A positive answer would suggest that the measures be



combined to yield a “better” (higher specificity and sensitivity to preictal dynamical

changes) integrated measure for anticipating epileptic seizures.



Chapter 2

Data Sets: Artificial and
Electroencephalographic

2.1 Artificial Time Series:
Bondarenko’s “Synthetic Brain”

One of the goals of this thesis is to compare two measures of dynamical change mo-
tivated by different theoretical considerations. In order to make this comparison, we
need a data set consisting of long time series in which known, quantifiable dynamical
changes take place. After all, before any instrument or measure can be effectively
used to probe complex systems, it is vital to establish its response—dynamic range,
sensitivity and precision—to known inputs.

The second objective of our research is to assess the influence of combining multi-
ple, complementary measures on sensitivity and specificity to preictal changes in EEG
signals, so it would be preferable to use artificial data that at least looks like an EEG.
Asymmetric artificial neural networks with delay have been found by Bondarenko
to produce “chaos similar to the human EEG” [8] and even “seizures” [11]. This
model was retained to generate control data. In the following section, we present the
model and describe the data sets produced with it, including some of their nonlinear

dynamical characteristics.



2.1.1 Artificial Neural Networks with Chaotic Solutions

In the last two decades, a number of researchers have reported evidence of low di-
mensional chaos in electroencephalographic recordings of human and other animal
brains (for example, [3] and [64]). The application of nonlinear methods in some of
this work was criticized for lack of rigor and adequate testing against suitable sur-
rogates [81]. Today, many of the pitfalls of nonlinear time series (T'S) analysis are
much better understood and excellent texts are available to guide the uninitiated [37].
Robust, well-designed implementations of key algorithms are also available, including
the public domain Time-Series Analysis (TISEAN) package [38]. But once bitten,
twice shy; scientists remain wary of strong claims of deterministic chaos in the brain.
The role such a phenomenon might play in the brain continues to be debated [47].

Nevertheless, it is fair to say that some of the interest in chaos in artificial neural
networks was motivated by these findings in the brain [8,34]. Initially, the existence
of chaotic solutions was demonstrated in neural network models both with [70] and
without time delay [41]. Values obtained for the maximal Lyapunov exponent and
various dimensions (fractal, information, etc.) quantified the low-dimensional chaos
in single neurons' and neural network models [2, 16, 20, 36, 57, 58, 77]. Estimation
of these measures is notoriously data intensive, requiring long, relatively noise-free,
stationary TS. Unlike the brain, of course, there is no inherent limitation in T'S length
from computer and electronic circuit simulations of neural networks.

The neural network model investigated by Bondarenko [8-11] is a generaliza-
tion of the Hopfield analog neural network [33]. The latter consists of a system of
highly interconnected neurons with a graded response function (a “sigmoid input-
output relation”), which we designate f(z). It was argued that the response of real

neurons and physical devices such as operational amplifiers which might be used in

''Unless otherwise noted, neurons in this chapter are of the artificial variety. These
model networks can represent numerous nonneuronal, nonbiological systems, but the
neuronal paradigm is traditional and appealing: we all have a brain. That being said,
we can dispense with the onerous use of enclosing quotation marks: “neurons”.
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electronic circuit implementations of these networks is better modelled by a sigmoid
than a simple two-state output. The equation as given by Hopfield is an explicit
resistance-capacitance (RC) charging equation, but here we present a dimensionless
form obtained by rescaling the time to units of the network relaxation time [51]. Let
u;(t) denote the state of neuron i at time ¢. A network consisting of M neurons is

described by the system of ordinary differential equations
M
wi(t) = —wi(t) + Y ay f(ui(t) +eilt),  i=1,..., M (2.1)
7j=1

where the a;; are elements of the M-square matrix of coupling coefficients, a;; f (u;(t))
represents the input to neuron 7 due to the current state of neuron j and all exter-
nal inputs are combined in e;(t). Hopfield shows that the collective computational
properties of this model are like those found in earlier studies of stochastic models
and consequently that functioning circuits with these useful properties can be built
out of real components. Moreover, the results add strength to the idea that similar
properties may somehow operate in the brain.

Signal propagation between neurons, be they real or electronic, is not instanta-
neous. Hopfield writes that the stochastic model whose significant behaviours are re-
produced in his continuous, deterministic model employs an asynchronous algorithm.
This means that each neuron is interrogated and its output state updated at random
times and independently of the other neurons; the average rate of interrogation is the
same for all neurons. Propagation delays in real systems, among other things, are
represented by this asynchrony. In omitting these delays from the continuous model,
one assumes that their time scale is considerably shorter than the integration time of
the network. However, to examine the effects of longer delays on network stability,
Marcus and Westervelt introduce an explicit delay 7 in the response [51] to obtain

the following system of delay differential equations (DDEs):

wi(t) = —ui(t) + Zaijf(uj(t — ) +e(t), i=1,...,M. (2.2)
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A symmetrically interconnected Hopfield network (2.1) will not oscillate. In such
a network, the nature—excitatory or inhibitory?>—and strength of coupling between
neurons is the same in both directions, i.e. a;; = a;. The same network with delay,
however, is found to oscillate if the delay exceeds a certain threshold. The promise
of parallel computation by artificial neural networks depends of their stability, so
this result is important from an engineering standpoint. The dynamicist sees first
and foremost a model greatly enriched by the introduction of a delay. Sompolinsky,
Crisanti and Sommers’ [79] finding that in randomly and hence asymmetrically con-
nected Hopfield models (a;; # a;; in general) chaotic solutions appear further enriches
the dynamics of this neural network.

Bondarenko’s model combines these elements in an asymmetrical analog neural
network with delay, the equation for which reads exactly as (2.2) except that there is
a provision for different delays 7; on each neuron. Nevertheless, Bondarenko imme-
diately makes the simplifying assumption that 7; equals a constant 7 for all neurons.
The asymmetry of the network is a result of initializing the coupling coefficients a;;

to random deviates on [—2, 2]. Initial conditions for DDEs are specified as a function

2Synapses are the main channels for interneuron communication and come in two
varieties, excitatory and inhibitory. These terms describe the influence each type of
synapse has on the generation of action potentials (APs), the characteristic spikes in
voltage which propagate down the axon and stimulate the release of neurotransmitter
molecules. The mean soma (cell body) potential must exceed a certain threshold for
an action potential (AP) to be produced. Input from excitatory synapses promotes
or excites the generation of APs by increasing the mean soma potential; inhibitory
input has the opposite effect. More excitatory input results in an increased mean rate
of AP generation or “firing” [83].

The graded response function of the Hopfield model describes a sigmoid input-
output relationship for the neurons; increasingly positive input pushes the output
towards the function’s upper asymptote. Equation (2.1) describes a situation wherein
positive coupling a;; to a positive output from neuron j will work to increase u; and
subsequently increase its output. While this fact alone might be enough to justify use
of the excitatory/inhibitory classification of interconnections in the model, the fact
that the dynamical variables u; are readily interpreted as mean soma potentials and
the output of the response function as the mean firing rate makes the terminology
irresistible.
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¢; : [—7,0]. In this case, all u;(0) are initialized to random deviates on [—2,2] and
u;(t) is taken equal to zero for ¢t € [—7,0[. The nonlinear response function of the

network is
f(z) = ¢- tanh(z), (2.3)

the coefficient ¢ being used to make global adjustments to response strength.
The form of the equation stated in [11] changes in a small but significant way
from the form presented above (2.2), which was used in Bondarenko’s 1997 papers:

the sign preceding the sum on j switches from positive to negative:

wi(t) = —u;(t) — Zaijf(uj(t — 7)) +elt), i=1,...,M. (2.4)

This is the equation implemented in the Bondarenko class (see section 2.1.2 below)
with which the control TS were generated (section 2.1.3) and the stability of the
model’s chaotic solutions studied (section 2.1.4 and appendix C). The equation for
the Hopfield model and its variants is otherwise always written with a plus before
this term [14,33,51,61,79]. The change is not a typographic error, because the
results obtained are consistent with the use of the negative sign. Specifically, maximal
Lyapunov exponent values and other nonlinear measures of the solutions are studied

as a function of the average of coupling matrix elements

1 M
e = W Z Clij, (25)

iyj=1
and nonzero fixed-point and quasiperiodic solutions are reported for e < —0.5 and
e > 0.5 respectively. We found that reverting to the conventional plus sign in the
model inverts the sign on these results. For e ~ 0, positive coupling approximately
balances negative coupling and because the chosen response function (2.3) is not only
sigmoidal but odd, the sign in question has no influence on the long-term behaviour of
the network. Except where otherwise specified, all numerical results take e adjusted

to equal zero (see Implementation for details).
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At this point, we extend the notation to allow for delayed mean field coupling
between networks; long-range synchronization between “brain regions” represented
by mean-field coupled networks operating in different dynamical regimes can then
be investigated. Let uz(-k)(t) for © = 1,..., M denote the state of the M neurons of

network £ and
@) = 37 2w () (2.6)

that network’s mean field at time ¢. If there are M’ networks, the equations for

network k& then reads

WP () = iaf ul(t - 1)) +ZTM )t = Tant)), (2.7)

=1 7
fori=1,....,M and k =1,...,M’. This sum on the mean fields replaces the generic
external force term e;(¢) in (2.4). The T}, are internetwork coupling coefficients and
a delay 7,¢ (for “mean field”) is introduced to the coupling; normally one would set

Tmf>>7'.

2.1.2 Implementation

The heart of any implementation of this artificial neural network is necessarily a
routine for numerically integrating the model equations (2.4). Taking a cue from
previous studies using this model [8-10, 31,32, 67|, we might disingenuously state
that the fourth-order Runge-Kutta (RK4) routine rk4 from Numerical Recipes in
C [66] modified for double precision was used with a step size of h = 0.01 and
sampling interval of At = 1.0...and leave it at that. However, numerical integration
of DDEs is by no means straightforward. Use of a classic integration algorithm
like RK4 implies certain simplifying approximations which must be made explicit.
Furthermore, specific values of e were used by adjusting the elements of the random

coupling matrix; we must specify when and how this is done. Finally, the broad
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characteristics of the object-oriented approach we use and the use of the Numerical
Recipes routines within the code should be outlined.

As mentioned earlier, initial conditions for DDEs are specified as a function
¢; = [—7,0], implying a state space of infinite dimension. As the system evolves,
so must this functional representation ¢; : [t —7,¢]. All numerical integration schemes
necessarily discretize time, so the state space is effectively reduced to finite size. Why
do DDEs pose a problem then for RK4, perhaps with adaptive step-size? In our case
we have a single, constant delay 7 in the equations and we assume that it is an integer
multiple n € Z* of a fized step-size h. The system’s present state and relevant past (n
previous steps) can then in principle be stored in an (n+ 1) x M element array. This
would all be fine except that the RK4 algorithm requires evaluation of derivatives at
times t, t + h/2 and t + h. Evaluating the derivatives (2.4) at the current time ¢ and
t+ h is not a problem; values of the state variables at t — 7 and t+ h — 7 are stored in
the array. But what of the values at t — 7 + h/2? The problem is only further com-
plicated by the use of adaptive steps (variable h). What is needed is a combination
of a numerical integration method, say some brand of Runge-Kutta algorithm, with
an interpolation scheme to allow the integrator access to a continuous past. This is
not what we did, nor did Bondarenko [12].

Rather, we have assumed that for A sufficiently small, neglecting changes in the
u; over one integration step will not influence the gross characteristics of network
behaviour. Past values of u; required for computing the step from ¢ to t + h were
all approximated to u;(t — 7), including u;(t + h — 7) although it could have been
looked up in the array. This simplifying assumption seemed reasonable but to get a
feel for the size of step-wise changes in u; and, more importantly, their influence on

the sigmoidal response function (2.3), we looked at the distribution of
|Auy| = |ui(t + h) —uy (t)], (2.8)
i.e. changes in the state of neuron 1 over one integration step, and

Af = c|tanh(uy(t + h)) — tanh(u,(t))| (2.9)
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in an M = 10 neuron network over 5 x 10° integration steps h = 0.01, with default
values for all other parameters except the output step, which was of course set to
At = 0.01 (cf. Table 2.1). The average fluctuation was [u;| = 0.03 % 0.03 (exror is
standard deviation), but the average change in the response was only m = 0.007
or about 0.2% of ¢. The normalized distribution of |A f| went like 0.033/|A f|, so over
80% of the values for |Af| were less than 0.0005 . These results support our view
that approximating u;(t+h/2—7) and u;(t+h—7) to u;(t — 7) has negligible impact
on the average characteristics of solutions, which are the properties we are concerned
with.

Although an integration step of A = 0.01 was used for all subsequent results from
this model, a cursory comparison of solutions with A~ = 0.01 and A = 0.001 was made
to ensure that solutions that were chaotic, quasiperiodic or fixed point at h = 0.01
remained so at A = 0.001. With default values and e = —0.8, the same fixed point
was obtained in both cases. At e = 0.8, similar quasiperiodic solutions were found for
both step sizes, with a very slow drift in relative phase. The duration of one “beat”
was about 2400 times the main oscillation period. In both cases, chaotic solutions
were found at e = 0.0, which naturally drifted apart at an approximately exponential
rate.

In [11], Bondarenko examines the influence of network “excitability” on solutions,
where a rise in positive, and therefore excitatory, coupling coefficients is reflected in
a rise in e, equation (2.5). Again, the coupling coefficients are random deviates on
[—2,2]. We note that e as defined is truly the average of matrix elements and not the
expectation value of the distribution from which they are drawn. That is, a value of
0.2 does not mean random deviates on [—1.8,2.2] were used instead. Our approach
is to initialize the matrix with random deviates on [—2, 2], compute e on this matrix,

calculate the difference between this value and the desired “excitability” o'
Aa=d —e (2.10)

and offset all matrix elements by this amount. Consequently, the a;; range in value
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Table 2.1: User-configurable model parameters in Bondarenko class and their default
values.

Parameter Default Setting
Number of neurons M 10
Global Coupling Strength ¢ 3.0
Delay 7 10.0
Average of matrix elements e 0.0
RK4 integration step size h 0.01
Output step size (sampling interval) At 1.0
Seed for coupling matrix initialization -1
Seed for state variable initialization -1
Number of networks coupled to this one 0
Delay in mean field coupling to this network 7py¢ 0
Internetwork coupling coefficients 0.0

from —2 4+ Aa to 2+ Aa. In a private communication, Bondarenko confirmed use of
this method in his experiments [12]. Using the default network and a few different
seeds for the matrix random number generator (RNG), solutions obtained by (a)
generating matrices until one within 107¢ of @’ was found (brute force), (b) shifting
the distribution by o’ (offset distribution) and (c) offsetting the matrix by Aa were
not found to differ qualitatively. Fixed point, quasiperiodic and chaotic behaviour was
observed on the same ranges of e using each of the three methods as those reported
by Bondarenko. With the exception of the set of TS where e is explicitly varied, a
value of e = 0 was used in all the experiments and TS generation in this thesis.

The model was implemented in object-oriented C++. Each instance of the Bonda-
renko type is a network with its own protected set of parameter values, state variables,
RNG seeds and registers, mean field coupling properties and “remembrance of things

(k)

past”, i.e. the array of past values of the state variables u; Model parameters
and their default values are listed in Table 2.1. The network is highly configurable.
Multiple instances can naturally coexist in a program and be interconnected. The
characteristics and entire history of one network can be copied to another by simple
association. A code fragment illustrating some of these features is presented in Fig-

ure 2.1. In addition to the many inherent advantages of object-oriented programming



17

Figure 2.1: Code fragment illustrating features of Bondarenko class.

Bondarenko brain[2] //Declare an array of two

//Bondarenko class objects
brain[0] .setGlobalCoupling( 5.0 ); // Set c (default is 3.0),

// but otherwise use default values
brain[1] .setCouplingSeed( -2 ); //For coupling matrix initialization
//(default is -1);

brain[0] .initialize();
brain[1].initialize();

// Networks will have different coupling matrices (because of
// different seeds) and different values of c¢ in response
// function.

// Integrate the system, outputing only the state of
// brain[0]’s neurons

while( integrating ){
for( n=0; n<2; n++) brain[n].computeOutputStep();
brain[0] .printState();

}

brain[1] = brain[0];
// brain[1] now has the same coupling matrix, current state
// and remembered past as brain[0]. Their ¢ values still
// differ, but that is easily remedied...

brain[0] .setGlobalCoupling( brain[1].getGlobalCoupling() );
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(communication with the model via a well-defined interface, information hiding and
data encapsulation [19], etc.), this approach makes it easy to build multi-network
“brains” (i.e., M' > 1 and T;; # 0 for some pair (i, 7)).

We have said that numerical integration in this implementation is carried out in
double precision floating point arithmetic using a modified version® of the fourth-
order Runge-Kutta algorithm rk4 [66]. To compute the step from ¢ to ¢ + h, the
routine requires the current time from zero, current values of the state variables u;(¢)
and their derivatives 1;(t).* Let ¢, and 7, be respectively the time and delay in units
of the step size h; we require that 7, be integer. In this way, a (1, + 1) x M array
can hold all the past states we will need for evaluating derivatives. The current state

is in row

i = t, mod T, (2.11)
and the delayed state required to evaluate derivatives is in row

i' = (t, — 7,) mod 7, = (¢, + 1) mod 7. (2.12)

Once the step is computed, this is also the row in which it will be stored; in other
words, every step writes over the oldest row.

One other NR routine is used in the Bondarenko class and that is ranl, an RNG
needed to initialize the coupling matrix and set initial conditions. Use of random
numbers is not intensive in this program, but it is always wise to use a reliable RNG

(rather than the notoriously poor C library function rand).

3All float declarations were changed to double in the function definition and
double arrays were passed to the function (initialized using dvector rather than
vector).

4This evaluation of the 1;(¢) before calling the integration routine is easy to forget;
realizing I had done so was a humbling experience. Fortunately, it was still early
days, so the bug was not too “costly”. Why not have rk4 handle all four calls to the
derivative function? The “driver” is required to make the first call to accommodate
use of the routine in adaptive step size schemes. If the driver decides a step is too
big, it can call rk4 again with a smaller step without having to reevaluate these
derivatives.
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2.1.3 Bondarenko Data Sets

Using an M = 10 neuron network, two data sets were generated, the ¢ set and the
e set. The same realization of the coupling matrix was used to produce all of the
data; this particular network did show the dependence on these parameters described
by Bondarenko. Small changes in even a single coupling coefficient can completely
change the type of solution obtained [9]; initial conditions leading to long term chaotic
behaviour vary enormously between realizations. This variation is explored further

in Appendix C. In the ¢ set, for each of
c € {1.0,2.0,3.0,5.0,10.0}, (2.13)

and e = 0.0, a TS of N = 2!3 = 8192 samples was recorded generated for each of 25
different sets of initial conditions at two sampling intervals, At = 1.0 and At = 10.0.

A similar set of TS, the e set, was generated for values of
e € {0.465,0.475,0.480, 0.485,0.486 }, (2.14)

with ¢ = 3.0. All neuronal outputs were recorded. To ensure that a stationary
solution had been reached, we discarded the first 3 x 10 integration steps. This
equals an elapsed time of £t = 3000, slightly longer than Bondarenko’s own estimate
of time to stationarity, ¢y, = 30/Nh = 2458 [8]. Typical signals for ¢ and e series are
shown in Figures 2.2 and 2.3 respectively.

In [8], the sampling frequency was chosen such that 8-10 samples per period of
the highest frequency “significant spectral component” were taken. Figure 2.4 shows
the power spectrum of the default network with ¢ = 1.0; the three most prominent
peaks correspond to periods of about 43, 22 and 15 arbitrary time units (atu). Similar
spectra are obtained for other chaos producing values of ¢. A sampling interval of
At = 2 would satisfy the spectral requirements; we used At = 1.0. This and At = 1.25
were indeed the (uncited) sampling intervals used by Bondarenko [12]. An interval of

At = 10.0 was used to produce “undersampled” data.
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Figure 2.2: Typical output for each of the values of ¢ in the ¢ set. A: ¢ = 1.0, B: ¢ = 2.0,
C:c=3.0,D:c=5.0 E c=10.0, with e = 0.0 throughout. Shown are neuron 1
outputs over an interval of At = 700 from the first TS for each ¢ sampled at At = 1.0.
Besides an obvious difference in amplitude, it is difficult to distinguish between the signals.
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Figure 2.3: Typical output for each of the values of e in the e set. A: e = 0.465, B:
e =0.475, C. e = 0.480, D: e = 0.485, E: e = 0.486, with ¢ = 3.0 throughout. Shown
are neuron 1 outputs from the first TS for each e sampled at At = 1.0. Note that the
interval shownn is more than twice as long as that in Figure 2.2 in order to show increasing
frequency of quasi-periodic bursts with increasing e.
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Figure 2.4: Estimated power spectrum of neuron 1 output of Bondarenko model M = 10,
7=10,e=0and ¢ =1.0. ATS of N = 100 x 1024 samples, sampled at intervals of
At = 0.5 or 50 h = 0.01 RK4 integration steps, was generated and the power spectrum
estimated by coherent phase averaging [39, 66] of the fast Fourier transforms of 100
windows of 1024 samples each: the TISEAN program spectrum [38] was used to obtain
the spectrum of each window and these spectra were then averaged.
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2.1.4 Characterizing the Bondarenko Data

Fixed point, quasi-periodic and chaotic solutions can all be observed in this model.
Bondarenko found that signals in the chaotic regime yielded values of correlation di-
mension and maximal Lyapunov exponents which were in the same range as those
obtained from human EEGs. The fact that different values of the correlation dimen-
sion were obtained from different neurons for a given set of parameter values was
emphasized as being similar to the variation of EEG results across different areas of
the brain. On the other hand, most of his results are obtained using a single real-
ization of the network and the strong influence that changes in coupling coefficients
can have on solutions has been acknowledged. The relationships between ¢ or e and
nonlinear measures computed on the solutions, then, cannot be taken at face value.
This model has already been used in assessing the discriminating power of mea-
sures across (presumably) increasingly chaotic TS [67], but these authors did not
report validation of any of the results in Bondarenko’s paper. Since changes in pre-

cisely these quantities reflect the dynamical changes to which our measures should
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be sensitive, however, characterizing the solutions obtained from our own network
realization is a necessary first step.

The dynamical change across different values of e for fixed ¢ is fairly obvious. The
frequency and duration of quasi-periodic bursts increase. In fact, these values of e
were chosen for their proximity to a critical value after which solutions are strictly
quasi-periodic. That the signals obtained with different values of ¢ are dynamically
different is less evident. This is the series we focus on in this section. Results in this
section were once again obtained with the default network (cf. Table 2.1 for paramter
values) modified as indicated in each experiment. In other words, these results are

for one realization of the network, the one used to generate the data set.

2.1.4.1 Maximal Lyapunov Exponent

Exponential divergence of trajectories is a well-known characteristic of chaotic sys-
tems. Lyapunov exponents quantify this divergence, and although a dynamical system
in M-dimensional state space will have M exponents \; for ¢« = 1,..., M, we will be
interested in the mazimal Lyapunov exponent A defined as follows [37]. Let u((0)
and u?(0) be two initially close points in phase space, ||u"(0) —u® (0)|| = § < 1.
If 6, denotes the distance at time ¢ between the two points, &, = ||u® () — u@(1)||,

then A is determined by
6~ S, S <1, t>1. (2.15)

Positive A means chaos.

We estimated A as a function of ¢ in M-dimensional phase space. For each value

1

of ¢, two identical networks, u(!) and u®, were initialized and the first u(*) was

integrated to ¢t = 2500 (skipping transient solution). Its state was then assigned to
(2)

2) \

., where ¢ is a random number® between 107 and

(2)

i

u®. A random perturbation eu

10~ was added to each neuron u,~ of network 2 and the initial separation between

5Obtained by computing 10(-"4%89)_ where the ¢ are random deviates on [0,1].
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Figure 2.5: Growth of In(é,,/do) shown for n = 0, ..., 2500 versus c. For details see text.
The linear scaling region used for estimating A is indicated in each case by vertical dotted
lines, whereas the sloped dotted line is the resultant fit. Scaling regions were determined
by visual inspection of each resultant In(d,,/d¢) curve. Fluctuations were generally larger
on the first 200 points of each curve, so scaling regions begin after this interval and
continue up to a point identified as the start of the shoulder on each curve. The slope of
the fit to this region along with the fitting error are plotted for each value of ¢ in the graph
on the far right. Fits were done in Gnuplot using an implementation of the non-linear
least squares Marquardt-Levenberg algorithm.
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the two networks in state space computed using the Euclidian norm

M 1/2
5 = [Duﬁ”«n - u?)(o»?] : (2.16)

i=1
Both networks were then integrated and the separation between their positions in
state space computed every At = 1.0,

1/2

8 = [i(ug”(n At) — u? (n At))? (2.17)

=1

The ratio 6§, /0y was stored for n = 1,...,3000. At that point, the state of network
2 was reset to that of network 1, network 2 was randomly perturbed again and the
integration of the two networks continued. After 50 such runs, the average value
of 6,/ across all runs for each n was output to an ASCII file. These results are
plotted in Figure 2.5. We find a rise in A with increasing ¢ up to a plateau for around
¢ = 5. For a network of this size (M = 10), Bondarenko obtained a similar but

nonmonotonic dependence on c.



25

The values of A cited in Bondarenko’s more recent papers [9,11] differ from our
own by about a factor of 2, which is readily attributable to the differences between
realizations of the coupling matrix. On the other hand, our results appeared to be
two orders of magnitude smaller than those in [8], which was initially a cause of some
concern. Upon closer rereading of this paper, we realized that we had been overlooking
the units of \ there, namely [s~!]. This is a suitable unit for a Lyapunov exponent
computed on a real time series, such as an EEG recording. In estimating these
exponents on his model data, Bondarenko rescales (“make[s] time normalization”)
the results such that “the main frequency of [the] numerical solution is equal to
the frequency of the human a-rhythm (approximately 10 Hz)”, although he neither
states the scaling factor explicitly nor shows any representative spectra in the earlier
papers. The rescaling allows him, in principle, to compare his model results with
those obtained on real EEGs.

In [9, Fig. 1], the main frequency of the solution for an M = 10 neuron network,
with ¢ = 3.0, 7 = 10.0 and e = 0.0, is clearly w = 0.12 or f = w/27 = 0.019atu™".
The period of this oscillation is T = 1/f = 52atu, which would correspond to a
scaling factor of 0.002s/atu. In [8], the author gives a result of A = 1.5s7! for these
parameter values, but we do not know whether the realization of the coupling matrix
and initial conditions used in this paper was the same as in [9]. The spectra of the
time series from our own realization of this network, on the other hand, have strong
peaks at around f = 0.023 and 0.067 atu™! or T = 43 and 15 atu respectively. Using
these periods to compute the scaling factor and applying this rescaling to our own
results, we obtain values of A\ = 4.5s57! for T = 15atu and 13.6s ! for T = 43 atu.
In the end, this “mystery” scaling factor makes it difficult to compare our results to
those on Bondarenko’s “normalized” data, although we can see that applying such a

rescaling brings us into the same general range for A as those Bondarenko cites.
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2.1.4.2 Correlation Dimension

Introduced by Grassberger and Procaccia [29], the correlation dimension v is a mea-
sure of attractor geometry suitable for use on objects reconstructed from finite time
series contaminated by noise. It can be used as a tool to quantify self-similarity
(fractality) in a system when it is already known to be present [37]. The number of
ezxcited degrees of freedom in a system corresponds to the dimension of the attractor
on which it lives. Given a set of N points «;,7 =1,..., N, in some vector space and

a distance €, one computes the correlation sum

CN.0 = 3= 20 2 Ol llai =), (218)

i=1 j=i+1
where © is the Heaviside step function,

0 ifx <O,
O(x) = (2.19)

1 ifz>1.
This sum counts the number of pairs (x;, ;) separated by less than e. C(N,¢) is
expected to scale like a power law, C(00,€) ~ €”, in the limit of an infinite amount

of data and small e. Thus the correlation dimension v is defined as

_ 0In(C(N,¢))

d(N,e) = e (2.20)
v= 11_1)1% ]313(1)0 d(N,e). (2.21)

When dealing with finite series of real data, the limits in (2.21) will obviously pose
a problem! Furthermore, this dimension is an invariant quantity only if a proper
embedding is found, so if delay coordinates are used, a correct choice of delay Temped
and embedding dimension m must be made.

In practice one usually computes C (N, ¢) for a range of embedding dimensions and
looks for a linear scaling region in a log-log plot of C'(IV, €) versus € over several values
of m. Caution must be exercised when interpreting the results of this algorithm. In

particular, Eckmann and Ruelle argue that for a time series of N samples, regardless
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of the precision of the data, the Grassberger-Procaccia algorithm will not produce
dimensions larger than

21og N
Ve = ——B % (2.22)
log(1/p)

where p = €/D, D being the diameter of the reconstructed attractor and € the order
of magnitude of the “small” distances € used in the algorithm [22]. If N = 8192 and
p = 0.1, we find using decimal logarithms that v < 7.8 . Taking N = 100000 and the
same value of p, we find v < 10. In light of this result, we should not be surprised that
values of the correlation dimension plateau at v ~ 6 — 8 in Bondarenko’s findings [8],
regardless of the independent variable. Furthermore, we should be wary if a linear
scaling region has not appeared by embedding dimensions of m =2 x 8 +1 = 17 [80]
for the short series or m = 21 for the longer series.

Using an implementation of the Grassberger-Procaccia algorithm with a fast
neighbour searching scheme included in the TISEAN software package (called d2) [38],
we examined the behaviour of C(N,€) on our own time series of N = 8192 points
sampled at At = 1.0. We used embedding dimensions ranging from 1 to 37 (for “high-
dimensional outputs” with v = 6 — 8, Bondarenko used m = 11 to 37 in increments of
2 [12]), although it is clear that embedding so little data in so many dimensions will
yield poor statistics at low €. Furthermore, even on our longest TS, the G-P algorithm
will not produce dimensions higher than 21. We did the computation up to m = 37 to
remain faithful to Bondarenko’s method, but we required that any scaling region we
identified—by visual inspection—be present beginning at m ~ 15. Pairs separated
in time by less than At = 100 were excluded from the sum to eliminate spurious
convergence to a low dimension resulting from autocorrelation [37]. The log-log plot
of the correlation sums obtained and “correlation dimension estimate” are shown in
Figure 2.6. We find a similar plateau in v around 8 and are similarly skeptical.

Naturally we tried repeating the experiment with longer time series. Bondarenko
informs us that he later repeated his calculations on TS of N = 10° samples and

obtained the same results as with the N = 8192 series [12]. Our own experiments
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Figure 2.6: For each ¢, correlation sum results In C'(N, €) vs. In € for embedding dimensions
m = 1 to 37 in increments of 2 using neuron 1 signal in first time series in At = 1.0
data set. Embedding vectors were formed using consecutive samples. The linear scaling
region used for linear fitting is indicated with vertical dashed lines in each graph and was
determined by visual inspection of the results. In all cases, fitting was performed in this
interval on results for m = 21 to 37. Slope and error of fit for each ¢ are plotted at the
far right.

10
0,
. ol
= * 8
> g
s v =
£ 12 6 1 -
-16 "“fr\ ‘ :
' 4 T T T T
4 0 4 -4 0 4 -4 0 4 -4 0 4 -4 0 4
Ine 123 5 10

with N = 10° TS yielded confounding results (Fig. 2.7).

The long TS appear to be stationary and similar to the shorter series. We ex-
amined the long series for ¢ = 10.0 more carefully by computing the average and
standard deviation on windows of 8192 samples overlapping by half a window. The
average fluctuated slowly with no clear trend in the range between +1 and —3, while
the standard deviation (SD) was alway in the 35 + 1 range. We did not examine the
stationarity more closely than that, which may explain the strange results and closer
analysis of very long TS would be important in future work.

If we fit on the same interval as in Fig. 2.6 we do obtain similar results (blue line).
However, a scaling region which is clearly not just part of an S-curve has appeared;
it is particularly striking in the ¢ = 2 results. Linear fitting on these intervals, which
are no narrower than those used in the shorter run, yields a very different relationship
between ¢ and v (black line). These results would suggest that the number of active
degrees of freedom deceases with increasing c. One can at best conclude that on our

realization of this artificial neural network, the behaviour of the correlation sum does
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Figure 2.7: Correlation sum results for TS of N = 10° points with all other parameters as
in Fig. 2.6. Linear fits to the same ¢ intervals as in that figure yield similar results (blue
lines). However, fits on the newly appearing scaling intervals show a very different trend
in v (black lines).
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appear to vary with respect to ¢. No clear relationship between v and ¢ could be
established, but the presence of significant dynamical differences between the signals
which are otherwise very similar to each other and to EEG signals in appearance is
all we require for our subsequent experiments. It would be interesting in the future
to redo the calculations using data sampled at different rates (maybe our embedding

was poor) and series recorded only after discarding a much longer transient.

2.2 Experimental Time Series:
Epileptic EEG Recordings

2.2.1 Electroencephalography

The electroencephalograph is an important tool in neurological diagnosis. Discovered
in the 1920’s by Hans Bergen, electroencephalography is based on measurement of
the weak currents produced on the surface of the brain by the aggregate of synchro-

nized activity from hundreds of thousands of neurons or more® [1, under “Electroen-

6Tt is not the axonal discharges (action potentials) which produce these brain waves
but rather fluctuations in the postsynaptic membrane potentials between the inside
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cephalography”]. Most frequently, electrodes are placed on the scalp and the pattern
of electrical voltage produced there by diffusion of these weak currents through the
skull are transduced by differential input amplifiers and recorded. Electrodes may
also be placed on the brain surface or in contact with deeper structures. These
recordings, referred to as intracranial EEG or iEEG, have the advantage of a higher
signal-to-noise ratio and greater spatial resolution. In the classic chart recorder, the
signals are amplified about a million times in order to drive the instrument’s pens.
Today, the signals are often digitized and recorded to magnetic or optical media.
Specialized software exists to aid in the analysis of these digitized recordings. Indeed,
the interpretation of EEGs is a clinical specialty requiring considerable training and

experience.

2.2.2 Description of the Data Set

The EEG recordings used in this thesis were kindly provided by Dr. Jean Gotman of
the Montreal Neurological Institute. There are five recordings varying in length from
four to seven hours from each of five patients undergoing intracranial EEG investi-
gation for medically intractable focal epilepsy. No information on the localization of
the epileptic focus was provided with the data. Signals from both intracranial and
surface contacts are recorded. Each patient is identified by a unique prefix: amy,
bob, carl, dan and eve. The actual name and sex of the patients was in fact unknown
to us. The signals were digitized at 200 Hz and archived on C¢D-ROM after analysis.
Other than the data itself, only the start time of each clinical seizure as marked by a
trained clinician was used in this study. To simplify batch calculations on the entire
set, the data files were copied to hard disk (filling 12 GBytes) and special routines
were written to extract specific channels of data from any given recording.

Of the 15 recordings which capture clinical seizures, only three capture more than

one. For each patient, there is one long seizureless recording made while the patient

and outside of dendritic processes.
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was awake and another made during sleep. The patients were awake throughout the
recordings capturing seizures.
From time to time, a patient needs to be disconnected from the EEG monitor.

[4

When this occurs, the system continuously writes “zeroes” on the recording in order
to preserve the relative timing of events before and after the disconnection; in other
words, the virtual strip chart continues to advance. This leaves gaps in the recording
which will naturally cause strong fluctuation in any measure we compute. We would
like to be able to ignore these fluctuations systematically in our analysis. For this
reason, a program was written to automatically catalogue these gaps based on the
algorithm presented in Appendix D. In Fig. 2.8, the duration of each recording,

location of its seizures and gaps and information about numbers of each type of

signal recorded are presented.

2.2.3 Amplitude-Frequency Features

It is never a good idea to undertake a nonlinear analysis of new time series without first
familiarizing oneself with the linear structure of these data. Precautions can be taken
to help avoid mistaking spurious fluctuations in a measure due to autocorrelations
as evidence of nonlinearity, most notably the use of surrogate data. This method is
discussed in Chapter 4. As a first step, however, we have computed the periodogram
of the first intracranial signal on each recording as well as the standard deviation on
a rolling window.

To produce the periodogram, the power spectral density is computed using the fast
Fourier transform (FFT) algorithm on nonoverlapping windows of 8192 samples (41
sec) and stored in an array. After the power spectrum on each window is computed,
the entire array is rescaled to the unit interval. The resulting data was then output
in Portable Grey Map (PGM) format. The image was then colorized and its contrast
adjusted slightly. Power increases from black to white through the blues and oranges

in the final image and variations in total power (i.e. signal amplitude) are easy to
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Figure 2.8: Schematic representation of major features of the EEG data set. Labels on
the left margin identify each of the 25 recordings in the set, which are represented by a
line extending to the right. Gaps in this line correspond to gaps in the recording (see text
for details of gap identification) and the total line length indicates the recording length.
Red diamonds mark the onset of clinical seizures. Yellow bars outlined in black show the
location and length of the first reference windows, and black bars the location and length
of the second. These windows are used in computing the similarity measure. To the right
of each line is the total number of channels recorded and in parentheses, the breakdown
in terms of number of intracranial contacts—surface contacts—ineligible channels. The
criteria for channel eligibility are described in §3.3.1.
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see. Some of the periodograms are presented in Figs. 2.9 through 2.12, but rather
than include all of the figures, we have summarized their main features in Table 2.2.
Where pronounced changes in the spectrum precede a seizure, the approrimate lead
time is recorded; this is meant to give a rough impression only. When the level rises in
these figures simultaneously at all frequencies, we expect to find an increase in signal
amplitude. Examination of Fig. 2.13, which plots the standard deviation results,
shows that this is indeed the case.

About a third of the recordings, including the eve series and bobsez02, show either
little variation in the preseizure interval (the former) or a lot of variation throughout
the interval (the latter). There is, in the results for these series, no evidence of a
distinct “preictal phase” when conditions are becoming favorable for a seizure. The
performance of the nonlinear measures on these TS will consequently be of particular

interest.
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Table 2.2: Descriptions of periodograms obtained using the first intracranial signal in each
recording and nonoverlapping windows of 8192 samples (41 sec). Times are relative to
the start of the recording, Ty, or relative to the onset of the first clinical seizure, Tj,.
Time from a marked spectral change persisting up to a first seizure is the “anticipation

time” T, (min).

Recording T

Description

amysez01l 30 rise in power at higher frequencies followed by overall rise in
power (Fig. 2.9)

amysez02 407 overall drop in power at Ty + 25 min, rising again at Ty, — 40 min

amysez03 20 preseizure bloom around 40 Hz

amyawake — 40 min interval at higher intensity from ~ Ty + 120 min

amysleep  — overall intensity swells over 60 min interval, drops and begins
again

bobsez01 20 drop in intensity at all frequencies at Ty, — 20 min

bobsez02 0 rapidly alternating strips of high and low intensity at all frequen-
cies (Fig. 2.10)

bobsez03 5) “, but alternation stops just prior to first seizure

bobawake — same as bobsez02

bobsleep — significant change in overall intensity every 10-40 min

carlsez01 15 overall rise in intensity; drops to initial levels at Ts, + 5 min

carlsez02 0 strong rise in intesity at seizure onset followed by drop to initial
levels and subsequent slow rise to higher overall intensity

carlsez03 100 overall drop in intensity Ts, — 100 min with choppy rise to initial
levels about Ty, — 5 min

carlawake — no pronounced changes in power spectrum

carlsleep — very uniform distribution; 60 min drop in overall intensity at
To + 100 min (Fig. 2.12)

dansez01 0 two 20 min bands of lower intensity between start and first
seizure, but first 60 min and 30 min prior to seizure very similar

dansez02 20 less power at higher frequencies than other TS; intensity drops
for 15 min at Ty + 90 min and again for 20 min prior to Sz

dansez03 0 changes in intensity every 5-40 min in the preictal interval

danawake — rapid, strong alternation of intensity at all frequencies

dansleep — some 10 min wide bands of lower intensity but little activity
overall

evesez01 0 no apparent preseizure activity (figure may be saturated by post
seizure levels)

evesez(2 0 “

evesez(03 0 “

eveawake — — rapid, strong alternation of intensity at all frequencies (Fig. 2.11)

evesleep

uniform; slight intensity fluctuation every 30-60 min
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Figure 2.9: Periodogram obtained using the first intracranial signal in recording amysez01
with nonoverlapping windows of 8192 samples (41 sec). Black lines extending above and
below the figure indicate onset times of clinical seizures. Frequencies go from from 0 Hz
at the top of the figure to 100 Hz at the bottom (contrary to convention). The figure
covers the entire recording, which is 4 hours long. About 30 min prior to the seizure, we
observe a rise in power at higher frequencies followed by an overall rise persisting up to
the start of the clinical seizure.
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Figure 2.10: Periodogram obtained using the first intracranial signal in recording bobsez02
with nonoverlapping windows of 8192 samples (41 sec). Rapid fluctuations in overall
intensity are observed on the entire interval before the first seizure and, in fact, the first
gap. Following the gap, the spectrum hardly changes at all. See also caption to Fig. 2.9.
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Figure 2.11: Periodogram obtained using the first intracranial signal in recording eveawake
with nonoverlapping windows of 8192 samples (41 sec). A high level of activity is found
in this recording. This characterizes several of the “awake” recordings. See also caption
to Fig. 2.9.
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Figure 2.12: Periodogram obtained using the first intracranial signal in recording carlsleep
with nonoverlapping windows of 8192 samples (41 sec). The “sleep” recordings generally
present uniform spectra which vary only slowly in time. See also caption to Fig. 2.9.
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Figure 2.13: These plots show the change in the standard deviation of the signal, which
reflects signal amplitude, computed on nonoverlapping windows 30 sec in length (60000
samples) using the first intracranial signal in each recording. The full width of each box
corresponds to 420 min (i.e. the length of the longest recording, dansleep). Red vertical
lines mark the start of clinical seizures. We see that several of the seizures (see amysez01,
amysez03 and carlsez01, for example) are preceded by dramatic increases in SD, i.e. signal
amplitude.
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Chapter 3

Dynamical Similarity

Dynamically similar processes explore similar regions of phase space. That is the
simple idea behind the nonlinear measure studied in this chapter. That one can
compute a meaningful measure of this similarity on a scalar time series is, on the
other hand, quite astonishing at first. Like most of the tools of nonlinear time series
analysis, this measure is based on dynamical systems theory [37] and begins with
phase space reconstruction. The approach, which we call simply dynamical similarity,
was pioneered by M. Le Van Quyen and collaborators from the Cognitive Neuroscience
and Cerebral Imaging Laboratory at de la Salpetriere Hospital in Paris specifically
as a means of anticipating epileptic seizures from EEG recordings [42]. We will come
back to their results in section 3.3.

In the minutes or even hours prior to a seizure, the dynamics of the epileptic brain
are believed to change from a “normal” interictal state to a preictal state in which
conditions are put in place for a seizure. This change in state is expected to introduce
considerable nonstationarity into EEG recordings. Consequently, the Paris group’s
starting point was a nonstationarity measure introduced by Manuca and Savit [50].

An important though often implicit assumption of most methods of time series
analysis, modelling and prediction is the stationarity of the system. Many a system
goes unmodeled for lack of sufficient stationary data, i.e. a lot of it! If one could
identify sets of disjoint segments of a time series which sample systems in dynamically

similar states, then these could be cobbled together and considered as a group to

38
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improve the statistics of these methods. Manuca and Savit proposed to compare the
overlap in reconstructed phase space trajectories, using delay coordinate embedding of
distinct segments of time series and Grassberger-Procaccia cross-correlation sums, to
identify such similarity. In an effort to reduce the computational burden of the method
while increasing its discriminating power on short, noisy time series, Le Van Quyen
and his collaborators adapted this approach in several important ways. Most notably,
intercrossing intervals (ICIs) between positive-going threshold crossings are used for
the reconstruction instead of delay coordinates. Although phase space reconstruction
using interspike and intercrossing intervals is not addressed explicitly by embedding
theorems, such intervals have already been shown to capture much of the interesting
dynamics in a variety of systems [35,63,72,73]. Furthermore, Pikovsky et al. [65]
have shown that the time crossings can be seen as phases of Poincaré sections of the
system flow.

After defining the measure in the following section, we will describe several ex-
periments on our artificial and EEG data sets. The goal of these investigations is to
allow comparison with the IIF and reveal, if one exists, an optimal combination of

the two methods.

3.1 Defining the Measure

Given a scalar time series S = {s1,..., sy} sampled at equal intervals At, let Sy be
a subset of S, a window of length /.. samples. This window is assumed to sample ad-
equately some reference dynamics of the original system; we wish to measure the sim-
ilarity between these reference dynamics and those captured in test windows (TWs)

on this and possibly other (compatible) TS.
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3.1.1 Phase Space Reconstruction

The window is first converted to positive-going threshold crossing times, where the
threshold is described in [44] and earlier works as the “zero of the signal”. We take
this to be identically equal to zero. Another possibility would have been the mean
value of S, which on our data is close to zero anyway. It should be noted that
no detrending or preconditioning of any sort was done on any of the data, real or
artificial, for our experiments with this measure. Let {t1,...,tx,} denote the set of
these threshold crossing times (for the window in question), which are in units of the

sampling interval, such that
si,, <0 and  sy,41 >0 (3.1)

is satisfied for all ¢,. In other words, no interpolation is done between points ei-
ther side of the threshold. We assume that Atf is much shorter than the shortest
characteristic time scale of the underlying process, in which case this discretization
should not influence the results. The thresholding algorithm as described (and indeed
implemented) will miss any crossings where points equal to zero to within machine
precision separate points to either side of the threshold. It would probably have been
more prudent, in retrospect, to use s;, < 0 as the first condition in (3.1).! We note
that the number of crossings Ny cannot generally be predicted from the length of
the window /,.¢; windows of the same size at different positions in S will in general
contain different numbers of crossings.

The set of Ny times {t;} are subsequently converted to N,—1 intercrossing intervals
(ICIs) denoted {I;} such that I,, = t,1 — t,. From these ICIs, we construct Ny =

Ny —m embedding vectors which we denote {4;} where A,, = (I, I, 1, ., In_m+1),

'A quick search for points less than 0.0001 (actually, matching “0.0000”) in the
first neuron output in the artificial data c series produced no points out of a possible
1.024 x 10%. It is clear that data which would satisfy the condition x = 0 in our
programs are similarly rare in the EEG recordings. Small changes in the threshold
or to the way in which threshold crossings are identified will have little influence on
the series of ICIs derived from any given time series.
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Figure 3.1: A schematic representation of the phase space recon-
struction process used in computing the dynamical similarity mea-
sure. In this example, the “clouds” of points formed in reconstruc-
tion space differ in several obvious ways. The same scale is used in
both reference and test plots.

defining an m-dimensional embedding of the reference dynamics. It is helpful to
visualize these vectors as forming a “cloud” of points in the reconstructed phase
space. Fig. 3.1 depicts the phase space “clouds” obtained from this process for m = 3

using some of the artificial time series, hence the stated values of ¢ and e.

3.1.2 Finding the Optimal Basis: Singular Value Decompo-
sition

Application of a singular value decomposition (SVD) of the m-dimensional embedding

space allows further improvement of the dynamical reconstruction for shorter time

series [?] and additional nonlinear filtering of noise by “identifying the optimum basis

for deployment of the trajectories” [44]. In other words, we project the reconstruction
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vectors onto the m’ < m basis vectors corresponding to the largest singular values
and in so doing, emphasize the main features of the reconstructed reference dynamics
because most of the variance in the vectors {A;} is in these directions. Let A(Sqer)
be the trajectory matrix of the reference window; the N embedding vectors {A;}
constructed from Syef constitute the rows of this m-column matrix.

To perform the SVD, we used packaged routines from Numerical Recipes in C [66],
where we find the following definition of SVD. Any N x m matrix A can be written
as the product of an N x m column-orthogonal matrix U, an m x m diagonal matrix
W with positive or zero elements and the transpose of an m x m orthogonal matrix

V,ie.

[N
I
€

v (3.2)

For ease of reference, we list the dimensions of these various matrices below:

A Negxm (3.3)
U  Netxm (3.4)
W mxm (3.5)
V.. mxm (3.6)
B mxn (3.7)
A Niet X m/ (3.8)
The diagonal elements of W, w = {wy,...,wy,}, are called the singular values

of A. The routine svdcmp returns U, w and V for a given A; we used a double
precision version of this routine, dsvdcmp. Subsequently, w and ET (in which the
columns are the spanning vectors) are passed to eigsrt, which sorts the singular
values in decreasing order and the associated columns of ¥T correspondingly. The
first m’ columns of the sorted V' then constitute the vectors onto which A(S) is
projected. If we denote the matrix of these m' basis vectors as B(Sie) (effectively

truncating ET at m' columns), the transformed trajectory matrix is obtained by
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matrix multiplication:

é’(sref) — _(Sref) . Q(Sref)- (39)

[~

3.1.3 Similarity Index

We now define a measure of dynamical similarity called the similarity index which
gauges the extent of overlap between the points visited in the reconstructed reference
dynamics and those in a test segment of length ¢, from, typically, the same series S.
We denote this TW by S; and proceed as described in §3.1.1 to obtain a trajectory
matrix A(S;) composed of N; m-dimensional embedding vectors for dynamics sam-
pled on this window. These vectors are then projected onto the same m’' optimal

basis vectors B (Srer) as the reference vectors by computing

AI(St) = A(St) . Q(Sref)- (310)

Let V;(S,) denote the "™ embedding vector for the segment S, projected onto
the optimal basis (i.e. the i"" row of A'(S,)) and V}(S,) the k™ component of
that vector. The similarity index we compute is based on Grassberger-Procaccia
correlation sums [29]. The cross-correlation integral of two sets of reconstruction

vectors represented by A'(S,) and A'(S,) is defined as

Nﬂ Nu

CLA5,). 4(5) = 73 2 D0l = IVi(S,) = VSl (3.11)

i=1 j=1

where O is the Heaviside function defined in (2.19) and r is the radius of a hyper-
spherical neighborhood around V;(S,). In our implementation, the Euclidean norm
was used:

1
2

IVi(S) = Vi(S)ll = | D (VS = VES) | (3.12)

The cross-correlation integral gives the fraction of pairs of points across the two

windows which are separated by r or less and hence is a measure of overlap.



44

There are two main considerations in choosing /.. and /;. The longer the rela-
tively stationary segment of S chosen as the reference window, the better will be our
representation of the underlying reference dynamics in the reconstructed phase space.
For example, a longer window on EEG recordings from an epileptic patient is more
likely include interictal spikes. On the other hand, to improve the temporal resolu-
tion of the measure, the TWs need to be kept as short as possible. Consequently,
lree will typically be several times ¢;. The computational burden of this method can
be significantly reduced without overly compromising the statistics of the measure by
downsampling the embedding vectors on the reference dynamics, randomly choosing
a fraction £y /(e of the available vectors. The more frequently visited regions of phase
space of the reference dynamics are presumably better represented in é’(Sref); there
is a higher density of points in these regions. It stands to reason then that uniform
random sampling of these vectors will yield a rarefied version of the reference dynam-
ics cloud, preserving its most significant features.? There was concern that using only
a single realization of the reference dynamics would either bias the results or increase
the size of fluctuations. To be sure, the use of fewer vectors for the reference dy-
namics influences the statistics of the measure to some extent. However, experiments
with averaging the similarity index, defined below, across multiple realizations did
not support this concern. Note that N = (£;/lrer) Nyt does not necessarily equal
N;.

At this point, it is convenient to let X € é’(Sref) denote this realization of the

reference dynamics and ¥ = A'(S;) the set of embedding vectors for a given TW.

2Qur initial implementation of this measure used a Monte Carlo approach to re-
sample A'(Spef). A very coarse m’-dimensional hyperhistogram of this set of vectors
was constructed and used to randomly select bins according to the distribution of
points among the bins. From each bin selected, one of the vectors contained in the
bin was chosen at random and added to the downsampled reference set. Since out-
liers in each dimension effectively determined the size of the bins, the overwhelming
majority of points tended to fall in a single bin and hence this bin was chosen most of
the time. So in effect, we were just uniformly sampling the reference vectors anyway!
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The cross-correlation ratio

C(X.Y)
VX Y] = -
- Jxx - ocxy

(3.13)

is defined as the similarity index between these sets of vectors, which is to say
between the the dynamics represented in these two embeddings.

The same realization of the reference dynamics X was used in computing - on all
the TWs on a given TS in our implementation. However, when the same S, from
one TS was used in conjunction with TWs from each of a series of TS, a different
realization of X was used for each TS. For the same reason that averaging ~ for a
given TW over several realizations of X was found to have little influence on the
result, namely that the values of v for each realization were quite similar, there is
no reason to believe that using the same realization for all TS would have had much
impact on our findings. Finally, on TWs where the number of reconstruction vectors

N; did not satisfy the inequality
N‘D > 0.1 x (Et/gref) X Nref = ].0% of N;ef7 (314)

the value of v was taken to be identically equal to zero. This is true also of windows

on which no pairs were separated by r or less, such that C(¥Y,Y) = 0.

3.1.4 Statistical Analysis

Let {gz} be the set of ¢ trajectory matrices derived from all the nonoverlapping TWs
on the reference segment itself. We define the baseline statistics p and o as the mean

and standard deviation of the similarity index computed on these TWs, i.e.

H= é Zfﬂé’zi]’ (315)
and
= 23X Y| (3.16)
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The normalized deviation of the similarity index v is defined as

w= 1K
g

(3.17)

The statistical significance (p-value) of fluctuations in 7 is determined from the
value of X relative to a threshold value of oy, by virtue of Chebyshev’s inequality
which applies to any statistical distribution of v, P(|Z| > ow) < 1/02 = p. For a
threshold of oy, = 5, for example, this says that the null hypothesis for a value of |3
above 5 can be rejected at the 96% confidence level.

We now define two temporal thresholds which allow us to identify hot zones on
the TS, intervals on which the statistically significant fluctuations in 7 also satisfy
certain conditions of persistence in time across multiple TWs. Two conditions are
satisfied in any “hot” sequence of TWs. First, the sequence begins with TWs spanning
an interval of at least 7, on which ¥ > oy,. Second, after these initial TWs, the
normalized deviation ¥ never falls below oy, for longer than 7, ( “g” is for “grace

period”). We call these three values, oy, Ty and 7,, the threshold parameters.

Fig. 3.2 illustrates their use in determining hot zones.

3.2 Experiments on Artificial Data

The purpose of these experiments is to assess the influence of window lengths and
sampling frequency on the power of this measure to discriminate different levels of
chaoticity (as reflected by increasingly positive maximal Lyapunov exponents) or
degrees of intermittency. Ultimately we want to compare the results of this section to
those obtained with IIF and to guide us in our choice of parameters in experiments
on real data. Two window lengths ¢, = 1024 and /¢, = 8192 were used on data of
each of the sampling intervals, At = 1.0 and At = 10.0. For reconstruction, m = 10

throughout and m' = 4 (optimal basis vectors).
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Y2 on channel “LA1" from recording “amysez01” up to
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effect on
deviation
the first

clinical seizure (first reference window). Using a deviation threshold
of oy, = 5, a minimum duration of 7, = 2min (4 TWs) and a

grace period of 7, = 0.5min (1 TW), an anticipation ti

me T, of

14.5 min is obtained with no hot zones other than that announcing
the seizure. With 7, = 0, on the other hand, T}, drops to 7.5 min
while a 6 min hot zone not directly associated with the seizure now

appears.

First clinical seizure (47.6 min)
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3.2.1 The ¢ Series
3.2.1.1 Methods

For each pair of values (cyef, ¢;) where cpef, ¢ € {1.0,2.0,3.0,5.0,10.0} including ¢,ef =
¢t, the following calculation was made. Let S~(c;) denote the first £,, samples of the
i'™™ time series sampled at At for ¢;. For all pairs (,7) where 4,7 = 1,...,25, the
trajectory matrices A(S> (crer)) and A(SP(c;)) were constructed, the m’ optimal
basis vectors for A(SP(cer)) were found and both trajectory matrices projected
onto this basis, resulting in A'(S2(crer)) and A'(S5(c;)) respectively. The value
YA (S (crer)], A (S5 (cy)) was computed for each pair (4, j) and the average (v) and
standard deviation ysp = 1/{72) — (7)? of the resulting 25? = 625 similarity indices
computed. The results for each (¢, ;) pair were output to an Ascil file. We note
that since the reference and test windows were both of length /,, there was no need
to downsample the reference window. For c.f = ¢ we expect values close to one
and hope to find that the difference in results for (cper, Crer) and (cpef, ¢1) is somehow
proportional to the difference in, for example, the maximal Lyapunov exponent found

for such values of c.

3.2.1.2 Results and Discussion

Figures 3.3 to 3.6 show the results for the different combinations of ¢;, and At.

All the (Cref, cref) pairs (in red in the figures) did indeed yield values close to 1
except in Fig. 3.3 (¢, = 1024, At = 1.0). There was a lot of variation in those results
and even a certain number of zeroes. On the At = 1.0 results, two distinct subsets of
c are apparent, A = {1} and B = {2,3,5,10}. Results between members of the sets
are symmetrical, i.e. (Y(crer € A, ¢, € B)) approximately equals (y(cret € B, ¢y € A)).
Furthermore, for all (c.f € B,¢; € B) pairs, we find (7y) &~ 1. Dynamical similarity
does not appear to be sensitive to the differences between time series within these
sets.

On the data sampled at intervals of At = 10.0, the error bars on the short ¢y, =



Figure 3.3: Similarity results on the ¢ series with /,, = 1024 and
At = 1.0. Shown are () and ~sp over all 25% combinations of
artificial times series for each (cyef, ¢1) pair. Results for which ¢ef =
¢; are in red. Dotted lines divide the figure into horizontal strips,
to each of which is associated a c¢ value. The scale bar to the
right of the figure indicates the range of values of v, which here is
the full possible range from 0 to 1.
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Figure 3.4: Similarity results on the ¢ series with ¢, = 1024 and
At = 10.0. Further details in the caption to Fig. 3.3.
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Figure 3.5: Similarity results on the ¢ series with ¢, = 8192 and
At = 1.0. Further details in the caption to Fig. 3.3.
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Figure 3.6: Similarity results on the ¢ series with /,, = 8192 and
At = 10.0. Further details in the caption to Fig. 3.3.
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1024 windows are comparable to the ¢, = 8192 results on the At = 1.0 data. The
distinctions between the A and B sets have all but vanished. This suggests that these
TS are undersampled.

We were also interested in the influence of noise on this measure, but it was not
clear how best to introduce such noise. In the end, we looked at additive noise. Let
o be the standard deviation of the time series {z;}, i = 1,..., N, to which noise is
to be added. A series of zero-mean Gaussian white noise, {¢;}, was generated with a
standard deviation equal to a fraction p of 0. A new series was formed by adding the
raw signal and the corresponding noise term, x; — x; +¢&;. For each of the time series
in the ¢ set, a single realization of the noisy data was produced. The above experiment
was then repeated. For values of p < 0.05, there was no noticeable difference between
the results obtained with the noisy data and those obtained with the raw data. At
higher noise levels, there was an overall increase in similarity across all (cgf, ¢;) pairs
and a reduced spread in results. This is to be expected as the original dynamics

drowns in the rising noise, so that eventually we are comparing a random cloud of
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points to another equally random cloud.

3.2.2 The e Series

We recall that in this set of artificial time series, it is the quality of the intermittency
which vary; the frequency of occurrence and duration of bursts of periodicity increase

with e (for typical output, see Fig. 2.3).

3.2.2.1 Methods

Once again, for each pair of e values (e, €;), we found the mean and standard
deviation of the similarity results on the 25? combinations of time series, () and ysp
respectively. Two window lengths, ¢, = 1024 and ¢, = 8192 were used for each of
the two sampling intervals At = 1.0 and At = 10.0.

3.2.2.2 Results and Discussion

The results are presented in Figures 3.7 to 3.10.

One immediately notices that while a window length of ¢, = 1024 was sufficient to
discern crudely the two sets on the ¢ series sampled at At = 1.0 (Fig. 3.3), it is sorely
inadequate for discriminating between the members of the e series (Fig. 3.7). However,
the results for the same window length on the “undersampled” data (At = 10.0),
Fig. 3.8, reveal that differences between the e series members were not obscured by
an insufficient number of data in the window but rather by the windows covering too
short an interval of time. This reflects the intermittent nature of these time series; to
capture the full dynamics of the system, the reference window must be long enough
in time to contain both periodic and chaotic behaviors. Interestingly, the length in
time of the windows in Fig. 3.9 is close to that in Fig. 3.8 but the mean differences
between e values are much smaller and all of the values are closer to 1 (note the
difference in vertical scale between the two figures). Of course, the size of the error

bars is also smaller. When sampled at a higher rate, then, the similarities between



Figure 3.7: Similarity results on the e series with ¢, = 1024 and
At = 1.0. Shown are (v) and ~vsp from all 25% combinations of
artificial times series for each (e, €;) pair. Dotted lines divide the
figure into horizontal strips, to each of which is associated an e,
value. The scale bar to the right of the figure indicates the range
of values of 7, which here is the full possible range from 0 to 1.
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Figure 3.8: Similarity results on the e series with ¢, = 1024 and
At = 10.0. Further details in the caption to Fig. 3.7. Note that
here the vertical scale is from 0.0 to 0.75 in each horizontal strip.
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Figure 3.9: Similarity results on the e series with ¢, = 8192 and
At = 1.0. Further details in the caption to Fig. 3.7. Note that
here the vertical scale is from 0.75 to 1.0 in each horizontal strip.
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Figure 3.10: Similarity results on the e series with /,, = 8192 and
At = 10.0. Further details in the caption to Fig. 3.7. Note that
here the vertical scale is from 0 to 0.75 in each horizontal strip.
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the series become more apparent; we see that the similarity measure is sensitive to
this.

Clearly, the best discrimination—Ilargest difference between results for different e
values with the smallest error bars—is obtained with 7, = 8192 on the data sampled
at intervals of At = 10.0, in other words with the most points over the longest time
(Fig. 3.10). Since the measure had no discriminating power on the undersampled
¢ series, however, we conclude that the use of the longer window and the smaller

sampling interval At = 1.0 would be optimal for both the ¢ and e sets combined.

3.3 Experiments on EEG Recordings

One of the objectives of the following experiments was naturally to compare the
anticipation times obtained on the data described in Chapter 2.2 to those found by
Michel Le Van Quyen and coauthors [42-44]. We also wanted to test the idea that the

reference window (RW) truly captures “normal” interictal dynamics by computing
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the similarity between the RW from one recording and the TWs on another from the
same patient. The hypothesis is that any “good” RW will be sensitive not only to the
changes preceding a seizure on the same recording but also to those on any recording
from the same patient; this allows for variation in “normality” between individuals.
The influence of changes in arousal states between and within recordings must not,
however, be neglected.

The focus of these previous studies was mainly on the appearance of hot zones
in the ~ 5min period just before clinical seizure onset. The positive findings were
taken as evidence that there is a distinct phase, the preictal phase, during which
the dynamics of the epileptic brain change significantly in preparation for a seizure.
If hot zones appeared long enough before the seizure and only before seizures, such
an event could trigger any one of a number of methods proposed for preventing
the seizure or at the very least warn the person of what’s coming. But hot zones
which do not continue uninterrupted to a seizure also appear, as we can see even in
Le Van Quyen’s results. We will call these free hot zones, as opposed to bound hot
zones which overlap the start of a clinical seizure. What exactly the free hot zones
mean is uncertain—maybe the brain enters the preictal phase by fits and starts—

and this begs the larger question of the specificity® of any method for anticipating

3Possible results for any binary diagnostic test can be classified as positive or
negative. For example, in the case of an illness, either you have it or you don’t.
A positive result on a case that should test positive is called a true positive and a
negative result on such a case is a false negative. Similarly, a negative result on a
case that should test negative is a true negative and a positive results a false positive.
How does one know what the answer should be? Sometimes one has a posteriori
knowledge. The correct result to a test designed to answer the question “Will patient
X die in the next 24 hours?” is relatively easy to get. Just wait a day. Other times,
one uses the response of the best available test, the so-called “gold standard”. So the
power of a new diagnostic tool, which may be faster or cheaper or less invasive than
the gold standard test, is assessed relative to this preexisting tool. The sensitivity
of the test is defined as the ratio of true positives to the number of true positives plus
false negatives, i.e. it measures how often a positive condition is in fact detected by
the test. The specificity, on the other hand, measures how often a positive response
actually indicates what it is supposed to; it is defined as the ratio of true positives



a7

seizures based on the similarity measure, or any measure for that matter. Although
the importance of this question is widely recognized, it has never been investigated
per se.

To start with, it is clear that this issue cannot be addressed even qualitatively
when only short recordings with seizures are analyzed. That is the main reason why
we are using a data set consisting of recordings several hours long, ten of which
are free of clinical seizures. In order to illuminate our discussion of specificity, we
present figures showing all of the hot zones on every channel over the entire duration
of each recording, and this for several combinations of threshold parameters. For the
same parameter values, the average number and average total duration of free hot
zones per channel on each recording will also be tabulated. Three of the recordings
capture multiple seizures, however, in tabulating statistics we will never look beyond
the first seizure. We have to assume that the recordings begin with the patient in the
interictal states. If the recordings had been even longer, we might have required that
any segment chosen as a reference window be preceded by two or more seizure-free
hours, but we could not afford that luxury.

For later reference, we will summarize the study documented in [44], published
in The Lancet in 2001 and the methods of which served as a starting point for our
own experiments. 26 recordings from 23 patients with temporal lobe epilepsy (TLE)
were analyzed. Of these, 18 were 60 — 90 min in duration including 30 — 60 min
prior to seizure and were taken from surface electrodes only (between 21 and 27 per
recording). The remaining 6 recordings were of 60 min duration including 50 min
prior to seizure and were taken from a mixture of surface and intracranial contacts.
Threshold parameters were oy, = 5, 7yn = 30s (i.e. a single window) and 7, = 0s:
anticipation times t,; for each contact ¢ were measured from the start of the earliest

TW on which ¥ > oy, and after which ¥ remained at or above oy, right up to the

over true positives plus false positives.
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seizure. Only the earliest anticipation time
T, = max t,; (3.18)
(3

across all contacts was reported for each recording. For 25 out of the 26 recordings,
a nonzero 1, is reported, with mean 6.9 min and SD 5.9 min. The number of active
channels (those on which ¢,; # 0, by our definition) is indicated graphically for just
the one “typical” recording, for which 7, = 18 min is quoted. More than three
quarters of the contacts are active and (t,;) is approximately 5 min.

Although the earlier studies [42,43] used intracranial recordings and the methods
and threshold criteria of all the papers differ to a certain extent, the general findings
of the three studies are mutually consistent. In [43], the number of “active” channels
in each recording is also reported, a result which we feel is quite important. A channel
was active if ¥ > 3 was satisfied for any continuous? interval preceding the seizure.
On recordings for which T, # 0, an average of 53% of contacts were active (SD 29%).
The variability of results between different recordings for the same patient is noted
in all three studies. A significant correlation between the evolution of the measure on
both surface and intracranial electrodes was observed in [44]. The authors also noted
a tenancy for the state transition, as reflected in values of ¥, to “wax and wane and...

occasionally [be] disrupted, in particular, shortly before seizure onset.”.

3.3.1 Methods

For the measure parameters, we used those quoted in [44]. The reconstruction dimen-
sion m = 10 and optimal basis dimension m’ = 4 were used, as they had been in the
experiments on artificial data presented above. Reference windows were ¢, = 300 s
in length and non-overlapping TWs of ¢; = 30s length were used. The neighbor-
hood size r was set to a level corresponding to 30% of the cumulative distribution
of distances between pairs of points or cumulative neighbour distribution in the

downprojected RW, A'(Syer).

41t is possible that 7, # 0 as it was in [42]. The article is unclear on this point.
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Unlike the Paris group’s, our reference windows were chosen without consideration
for the presence of artifacts or interictal spikes—of which we had no knowledge—or
any systematic evaluation of stationarity on the chosen interval. One way we make up
for this is by testing reference windows across recordings for the same patient, because
a window which by a combination of the criteria we do use and sheer luck captures
the interictal dynamics of that brain in that region and results in a hot zone on one
recording, should do so on the other too. In [43] and possibly [44], stationarity was
assessed by inspection of the similarity matrix, obtained by computing the similarity
index v of all possible pairs of TW on a TS. A posteriori, we assert that the values of o
typically obtained on our reference windows support a claim of sufficient stationarity;
o was typically around 2% of p. On recordings capturing clinical seizures, the main
criterion in our placement was distance in time from the first recorded seizure: the
first window was placed as early as possible in the recording, the second about 20 min
before the first seizure. Adjustments to the position were made to allow for gaps in
the recording; a buffer of 10 to 30 min was maintained between the RWs and any gaps
as well as the start and end of the recording. The times of all the RWs are illustrated
in Fig. 2.8; the RW is chosen at the same time in all channels.

A header file is associated with each of our recordings which, among other things,
codifies the channel types and provides a label for each channel. In these recordings,
intracranial contacts (“SEEG” for subdural EEG) were type 2 and surface contacts
(“EEG”) were type 1; channels of all other types were rejected. Furthermore, channels
with labels containing any of the following character sequences (not case sensitive)
were also rejected: “ekg”, “emg”, “eog”, “rpar”, “ref”. The remaining channels in
each recording were eligible channels. On these, we computed the similarity index
between each of the two reference windows and consecutive non-overlapping TWs
moved over the whole recording.

Using the set of first reference windows only, we also did cross-recording computa-

tions for recordings from the same patient. A mapping between channels of different
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recordings was automatically constructed on the basis of channel labels. For exam-
ple, channel 30 in the recording “evesez03” with label “RH2” would be mapped to
channel 47 in “evesleep”, which has the same label. Let W/ (q) denote the first ref-
erence window on channel ¢ of recording i from a given patient and S;(q) the entire
time series for channel ¢ in recording 7 from the same patient. If a mapping could be
established between channel ¢ in recording ¢ and some channel ¢’ in recording j, then
the similarity index was computed between W)(q) and consecutive non-overlapping
TWs on Sj(¢’'). We recall that there are five recordings for each patient in the data
set; this computation was repeated for all the (7, 7) pairs® where 7,5 = 1,...,5. The
mapping and computation procedure was repeated for each patient separately.

For each combination of RW and time series (TS), the time from the start of the
recording at the end of each TW (in numbers of samples) and the value of  on that
window were output to an Ascil file.® Two programs were written to reduce the
results for a given run (i.e. given set of measure parameters and choice of reference
window), one to tabulate” anticipation times and other statistics described below
and another to generate the figures showing hot zones for a given set of threshold
parameters.

For a given set of measure parameters, which is to say the results of a given run on
the EEG data set, and values of the thresholds, the tabulation program reduces the

results for each recording to the following (in order of column headings on Tables 3.1-

*Including, in fact, the case i = j. In this paper, all same-recording results
obtained using the first RW were extracted from the set of results for the entire
cross-recording batch.

®The naming convention for these files was [RW filename]_[TS filename]_[channel
label].dat. So for example, the results of the similarity index computation using a RW
from channel “RH1” in recording “carlsez03” on the TS for the identically labelled
channel in recording “carlsez01” were written to “carlsez03_carlsez01_RH1.dat”.

"The tabulation program outputs its results in IXTEX tabular form which was
then inserted as is into this document. The figure program generates a Gnuplot
script which, when interpreted by the Gnuplot program, produces the PostScript files
incorporated herein. Gnuplot is distributed under General Public License (GPL) and
is available at http://www.gnuplot.org.
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3.3):
Active Channels are those in which a bound hot zone occurs.
Eligible Channels are those whose type and label satisfy the criteria defined above.

Earliest Anticipation is the longest anticipation time. The anticipation time on
any given active channel is the time in minutes from the start of the bound hot
zone (i.e. the end of the first TW on which ¥ > oy;) to the seizure (the start

of the window in which the seizure begins).
Mean Anticipation is the average over all the active channels of anticipation times

Mean Gap is recorded because on a few recordings, gaps precede the first seizure. If
the oy, and 7, threshold conditions are satisfied at least one minute before the
gap, we ignore the gap plus one minute either side of it and continue analyzing
the results beyond the gap. If the hot zone containing the gap turns out to be
bound (i.e. leads up to a seizure), we including the duration of the gap in this

average over all the active channels.

Length of Segment that is considered in tabulating free hot zone statistics. For
seizure-free recordings, this is the length in hours of the entire recording. Oth-

erwise, it is the length of the recording up to the first seizure.

Mean Free Hot Zones per Eligible Channel per Hour is the total number of
free hot zones in all eligible channels divided by the number of these channels

and the length of the segment.

Mean Total Duration of Free Hot Zones is the total duration of all the free hot
zones on the analyzed segment in all the eligible channels divided by the number

of these channels.

Where the error is given, it is the standard deviation.
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3.3.2 Results and Discussion

The first results we present are those for the threshold parameters used in [44], namely
O = 9, Tth = 1205 and 7, = 0, using the first reference window. All of the resulting
hot zones, free and bound, are shown in Fig. 3.11 for both intracranial contacts (black)
and surface contacts (purple). The purpose of this figure and the others like it is to
give an overall appreciation of the behaviour of the measure for a given set of RWs
and thresholds on all of the recordings, at the expense of resolution. Two of the the
more interesting plots from Fig. 3.11, amysez01 and carlsez01, are reproduced with
enlargement in Figs. 3.12 and 3.13 respectively.

Table 3.1 shows the statistics for the intracranial contacts and Table 3.2 for the
surface contacts. The mean nonzero earliest anticipation time on intracranial contacts
is 24 min (SD 34 min), but the mean anticipation times are obviously much lower than
that. Averaging over the nonzero mean anticipation times, we get a value of 7 min (SD
6 min) for intracranial EEG, which resonates with the Paris group’s findings. Bound
hot zones were found in 8 of the 15 first seizures on an average of 26% of eligible
intracranial contacts (SD 26%) and results on surface contacts were similar, making
allowances for the influence of a much smaller number of eligible contacts on the
statistics. Using a lower deviation threshold of o, = 3, such that our active channels
are comparable to the “involved channels” of [43], we find active channels in 10 of
the 15 recordings with seizure, but the mean remains 26% of eligible channels (SD
26%). The hot zone figure plainly shows tremendous intra-patient and inter-patient
variation in the behaviour of the measure. We should mention that adjustments in
the threshold parameters could produce more optimal performance on this data set in
some respect, such as bound hot zones on all first seizures, but we found that this was
only at the expense of creating a lot of free hot zones. Small changes in the parameter
values did not have a substantial influence on either the qualitative or quantitative
results.

Free hot zones are rare in most of the preseizure intervals. On a recording like
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“amysez02”, the significant deviations clearly precede the seizure, but X falls again
just before the seizure so these zones are counted as free. This is an example of
the “waxing and waning” of the state change observed previously. Adding a short
grace period of 7, = 2 min increases the number of active intracranial contacts on this
recording by 7 to 14 out of 48, as shown in Table 3.3. Whereas a large number of
active channels and large mean anticipation time suggest strong anticipation of the
seizure in “carlsez03”, the figure reveals a seemingly random spatial distribution of
bound hot zones and a distinct strip of free zones long before the seizure (the full
width of the box corresponds to 420 min). Taking these considerations into account,
a claim for anticipation on the basis of fluctuations in this measure seems justified
only on the recordings of patient “amy” and “carlsez01” as well as the seizures in
“bobsez02” other than the first. Hot zones mark at least the beginning of almost all
the seizures (i.e. detection rather than anticipation of the seizure) and interestingly,
seem to be dying out towards the end of the recording. This reflects a return to

9

interictal dynamics. The “amy” recordings again and “evesez01” and “evesez02” are
the most striking examples of this. Looking down the column of “awake” recordings,
free hot zones are few and, when they occur, of relatively short duration. The “sleep”
recordings are quite the opposite.

For the same values of the threshold parameters, the second reference windows
yielded results generally consistent with the first but poorer anticipation, as Fig. 3.14
shows. We have not included a table for this experiment; suffice it to say that there
are active channels in only 6 recordings and that these represent less that 10% of
the eligible channels in every case except “amysez01”. With the RWs generally much
closer to first seizure onset, it is not surprising to find a slight increase in free hot zones
well before the seizures. Free hot zones remain sparse on the “awake” recordings and
dense on “sleep”. The most striking difference is in “bobsez03”, which goes from a

few unconvincing bound hot zones to none but with a nonetheless clear demarcation

between the hour directly before the seizure and the rest of the recording.
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We have included figures showing the results of cross-recording calculations for pa-
tients “amy” and “bob”, Figs. 3.16 and 3.17 respectively. In the former, the similarity
between results on a given recording for all the reference windows is remarkable. Even
the RW from “amysleep” gives essentially the same results. The abundance of hot
zones in the “amysez03” column, many spanning the entire length of the recording,
tells us this particular RW is somehow “abnormal”. Nonetheless, results on “amy-
sez03” in the region from which the abnormal RW is taken with all the other RWs
reveal nothing. This is one of the best examples of the asymmetry introduced in the
measure by projection onto different optimal bases. Similarly, the results using the
“bobsleep” RW and the other RWs on “bobsleep” reveal that the “bobsleep” RW is
defective in some way; it does not appear to sample any sort of normal dynamics for
this patient. The observations demonstrate the value of cross-recording trials of any
given RW, when the discriminating power of the measure depends strongly on this
window’s representation of the reference dynamics.

Finally, while computing the similarity index on the various recordings, we noticed
a lot of variation in the number of crossings in the reference window segment and
test window segment and wondered if a trend in the number of crossings in the TW
relative to the RW alone might be enough to anticipate the seizures. Such a trend
could be caused by a rise in power to higher frequency spectral components or an
increased frequency of interictal spiking. In other words, it would show up under
linear time-series analysis. As a simple test, we logged the number of crossings in
the RW segment, Ni(Spet), and the number in each of the TWs, N,(S;), for the first
intracranial channel of each recording. In Fig. 3.18, we have plotted time series of the
ratio 7, = Ny (S;)/Nx(Sret) obtained and indicated the start of each clinical seizure.
A downward trend in 7y just before the first seizure is clearly seen in the “amysez”
recordings. Very pronounced preseizure rises in the ratio are seen in “bobsez01” and
“carlsez03”. The strong fluctuations on “bobsleep” are also noteworthy. These results

shed light on the “defectiveness” of the “bobsleep” RW; the whole TS would appear
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to be exceptionally nonstationary. Furthermore, it helps to explain why the results
on the “amy” seizures were so consistently good—these seizures are likely the easiest

to anticipate by any method, linear or nonlinear.

Figure 3.11 (following page): Overall trends in similarity values can be appreciated from
this figure, which shows the hot zones identified in all eligible channels from the results
using the first reference window on all recordings and thresholds of oy, = 5, 7, = 120s
(i.e. four TWs) and 7, = 0. Results from intracranial EEG channels are in black, surface
EEG is in purple. Red lines mark the start of clinical seizures. Blue bars along the
bottom show the location and extent of gaps in the recording. The results on the RW are
reproduced at the start of each signal, which adds five minutes to the recording. Black tic
marks on the bottom edge delimit the length of the recording plus five minutes, the full
width of the box corresponding to 425 min (i.e. the length of the longest recording plus
five minutes). Black tic marks on the left-hand border indicate the extent of the signals
for that recording; a box can accommodate a maximum of 64 signals. Generally, channels
in the top half of this range were in the right hemisphere and those in the bottom the
left. Ineligible channels are marked with a green tic on the left (this mark overwrites the
black mark in some cases). Those on which the similarity algorithm failed for any reason
are marked with a green tic on the right.
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Figure 3.12: Detail from Fig. 3.11: amysez01. We recall that the two black tics at the
bottom of the graph mark the start and end of the recording, which here is 4 hours
long. We have added a time scale for convenience. Bound hot zones are found in 47
intracranial EEG channels with an average anticipation of 9.8 min and 5 surface channels
(mean anticipation of 13.5min). The hot zones generally persist with intermittant breaks
between the two seizures, after which we see a gradual return to a dynamics similar to
the reference state.

-5 60 120 180 240
Time in min



68

Figure 3.13: Detail from Fig. 3.11: carlsez01. Scattered free hot zones precede the seizure,
including a number that occur more or less simultaneously in several channels shortly after
a gap (indicated by the blue mark at the bottom of the graph). Bound hot zones are
found in 18 intracranial channels (mean anticipation time of 7.1 min) and only 2 surface
channels. We notice that certain groups of channels have hot zones coinciding with the
seizure which end very shortly after seizure onset, whereas the hot zones on other groups
of channels persist almost to the end of the recording. In other words, we observe spatial
differences in the dynamics on this recording.
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Table 3.1: Anticipation and free hot zone results on intracranial EEG channels (“Type 2")
using the first reference window, oy, = 5, 7, = 120s and 7, = 0.

Recording Active Eligible Earliest Mean Length of  Mean Free Hot Mean Total

Channels Channels Anticipation Anticipation Segment  Zones per Eligible Duration of
(Mean Gap) Channel per hour Free Hot Zones
min min hr min

amysez01 47 53 23.0 9.8 + 5.4 (0.0) 0.8 1.08 + 0.87 6.0 + 6.8
amysez(02 7 48 3.0 2.2 £ 0.5 (0.0) 2.2 0.97 £ 1.15 9.4 + 8.3
amysez03 8 48 7.0 3.1 £ 2.1 (0.0) 2.8 0.12 + 0.28 0.7 &+ 2.0
amyawake 54 . 4.5 0.31 &+ 0.51 2.2 + 2.8
amysleep . 54 9.0 1.55 £ 1.69 19.8 £ 11.3
bobsez01 0 o0 — — 1.2 0.03 £ 0.24 0.2+14
bobsez02 0 50 — — 2.0 0.01 + 0.07 0.0+ 0.3
bobsez03 0 50 — — 2.9 0.06 + 0.32 0.3 +1.3
bobawake 49 4.0 0.09 4+ 0.36 044+19
bobsleep . 49 . . 4.0 1.70 £ 2.25 34.2 + 32.4
carlsez01 18 52 25.5 7.1 £ 6.3 (0.0) 3.0 0.47 + 0.87 2.2 + 3.7
carlsez02 4 52 7.0 3.4 £+ 2.1 (0.0) 2.2 0.47 &+ 1.09 3.9 + 10.8
carlsez03 15 52 113.0 20.9 + 37.3 (0.0) 4.4 1.25 £ 1.60 12.2 £ 13.2
carlawake . 52 . 9.0 0.22 £ 0.54 1.2 £26
carlsleep . 52 : : 4.0 3.49 + 3.83 36.0 + 19.0
dansez01 4 99 9.5 4.1 + 3.2 (0.0) 3.7 0.79 + 1.54 9.7 + 18.0
dansez02 4 55 8.5 4.2 + 2.6 (0.0) 4.2 2.00 £+ 2.21 30.8 £ 11.2
dansez03 0 55 — — 2.2 0.26 + 0.49 1.8 £ 3.0
danawake 55 5.5 1.00 + 1.47 5.8 + 7.6
dansleep . 99 7.0 0.57 £1.14 5.6 = 12.9
evesez(01 0 60 — — 5.0 0.06 &= 0.28 0.4 + 2.2
evesez(02 0 44 — — 0.7 0.10 £ 0.45 0.4+£1.9
evesez(03 0 44 — — 1.4 0.02 &+ 0.11 0.8 & 5.5
eveawake 38 4.1 0.32 &= 0.50 1.3 £ 1.7
evesleep 60 5.0 0.42 + 1.01 3.9+ 11.6
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Table 3.2: Anticipation and free hot zone results on surface EEG channels (“Type 1”)
using the first reference window, oy, = 5, 7y, = 120s and 7, = 0.

Recording Active Eligible Earliest Mean Length of  Mean Free Hot Mean Total
Channels Channels Anticipation Anticipation Segment  Zones per Eligible Duration of
(Mean Gap) Channel per hour Free Hot Zones
min min hr min
amysez01 5 8 17.0 13.5 £ 2.7 (0.0) 0.8 0.62 + 0.41 7.7+ 10.6
amysez02 2 14 7.0 5.5 + 1.5 (0.0) 2.2 1.02 + 1.24 8.0 +£ 9.0
amysez03 0 14 — — 2.8 0.33 + 0.54 1.8 + 2.6
amyawake — 8 N/A N/A 4.5 0.61 £ 0.81 44 + 3.2
amysleep — 8 N/A N/A 9.0 2.10 + 2.14 33.7+£ 5.9
bobsez01 0 11 — — 1.2 0.00 £+ 0.00 0.0+ 0.0
bobsez02 0 11 — — 2.0 0.05 + 0.15 0.2+ 0.5
bobsez03 0 11 — — 2.9 0.10 + 0.23 0.3 +0.8
bobawake — 12 N/A N/A 4.0 0.21 + 0.72 1.5 +£4.8
bobsleep — 12 N/A N/A 4.0 0.96 + 1.65 12.6 + 21.7
carlsez01 2 11 3.0 3.0 £ 0.0 (0.0) 3.0 0.15 + 0.26 0.6 + 1.0
carlsez02 1 11 1.5 1.5 + 0.0 (0.0) 2.2 0.94 + 1.82 7.1+ 13.8
carlsez03 2 11 89.5 50.0 £+ 39.5 (0.0) 4.4 0.97 + 1.34 8.6 +11.7
carlawake — 11 N/A N/A 5.0 0.00 £ 0.00 0.0 £ 0.0
carlsleep — 11 N/A N/A 4.0 3.66 + 3.65 45.0 £ 13.3
dansez01 0 6 — — 3.7 0.05 £ 0.11 0.2 £+£0.3
dansez02 0 6 — — 4.2 1.95 + 1.92 28.8 + 9.6
dansez03 0 6 — — 2.2 0.15 + 0.36 0.9+1.9
danawake — 6 N/A N/A 5.5 0.85 + 1.22 4.5 + 5.2
dansleep — 6 N/A N/A 7.0 0.17 £ 0.30 0.7+t 1.0
evesez01 1 3 84.5 84.5 + 0.0 (22.5) 5.0 0.00 £+ 0.00 0.0+ 0.0
evesez(02 0 2 — — 0.7 0.00 £+ 0.00 0.0+ 0.0
evesez03 0 2 — — 1.4 0.00 £+ 0.00 0.0+ 0.0
eveawake — 1 N/A N/A 4.1 0.74 +£ 0.71 3.1 +£0.0
evesleep — 3 N/A N/A 5.0 0.00 &= 0.00 0.0 £ 0.0
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Table 3.3: Anticipation and free hot zone results on intracranial EEG channels (“Type 2")

using the first baseline, oy, = 5, 71, = 120's and Tyrace = 120ss.

Recording Active Eligible Earliest Mean Length of  Mean Free Hot Mean Total
Channels Channels Anticipation Anticipation Segment  Zones per Eligible Duration of
(Mean Gap) Channel per hour Free Hot Zones
min min hr min
amysez01 51 53 34.5 13.4 £ 6.3 (0.0) 0.8 0.00 £+ 0.00 0.0+ 0.0
amysez02 14 48 7.0 3.0 £ 1.4 (0.0) 2.2 0.38 + 0.43 11.7 + 84
amysez03 12 48 11.5 5.0 £ 2.5 (0.0) 2.8 0.05 + 0.23 0.9 + 4.3
amyawake 54 : : 4.5 0.17 £ 0.27 3.3+ 4.1
amysleep . 54 5.0 0.72 £ 0.78 23.3 £12.8
bobsez01 0 50 — — 1.2 0.03 + 0.24 0.4+ 28
bobsez02 0 50 — — 2.0 0.01 £+ 0.07 02+1.2
bobsez03 2 50 3.5 3.2 £ 0.2 (0.0) 2.9 0.04 + 0.25 04+ 2.3
bobawake 49 : 4.0 0.05 + 0.19 0.8 + 3.7
bobsleep . 49 : : 4.0 0.53 + 0.68 39.3 + 35.6
carlsez01 27 52 62.5 9.3 + 11.3 (0.2) 3.0 0.28 4+ 0.57 1.9+ 44
carlsez02 4 52 85.0 32.9 + 34.3 (0.0) 2.2 0.27 + 0.51 3.6 +76
carlsez03 16 52 113.0 66.3 + 41.5 (0.0) 4.4 0.42 £+ 0.55 11.0 £ 10.9
carlawake . 52 - - 5.0 0.17 £ 0.37 1.9 + 4.7
carlsleep . 52 : : 4.0 0.94 + 0.99 50.2 + 24.2
dansez01 10 55 68.0 46.5 + 28.2 (0.0) 3.7 0.29 £+ 0.51 9.2 + 15.6
dansez02 10 55 33.5 12.1 £+ 8.5 (0.0) 4.2 0.83 + 0.88 34.9 + 13.0
dansez03 0 55 — — 2.2 0.24 + 0.44 2.8 + 4.6
danawake 55 5.5 0.73 + 0.95 9.3+ 11.9
dansleep . 55 : . 7.0 0.29 £+ 0.50 7.9 + 16.0
evesez01 1 60 4.0 4.0 4+ 0.0 (0.0) 5.0 0.04 + 0.18 0.6 + 3.9
evesez(02 2 44 13.5 9.8 + 3.8 (0.0) 0.7 0.03 + 0.21 0.3 + 1.7
evesez03 0 44 — — 1.4 0.02 + 0.11 0.9 +£6.0
eveawake 38 4.1 0.32 + 0.48 1.8 + 2.7
evesleep 60 5.0 0.18 + 0.41 6.2 £ 15.7

1L
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Figure 3.14: shows the hot zones identified in all eligible channels from the second ref-
erence window results on all recordings for thresholds of oy, = 5, 7, = 2min (i.e. four
TWs) and 7, = 0. See Fig. 3.11 caption for details.
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Figure 3.15: Detail from Fig. 3.14: carlsez03. The second RW was located 20 min prior
to the clinical seizure on this recording. It is interesting to note that this RW appears to
be in the preictal region, with the interictal and ictal regions showing strong dissimilarity
from the band just before the seizure. Some quick tests were done where the RW was
placed immediately before the seizures and we looked for dissimilarity from this region,
but this approach did not appear to improve the performance of the measure.
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Figure 3.16 (following page). shows the hot zones in all eligible channels from the cross-
recording results for patient “amy”. Thresholds of oy, = 5, 7, = 2min (i.e. four
TWs) and 7, = 0 were used. Green tic marks to the right indicate channels for which no
mapping could be established with the reference window series. Column headings indicate
the source of the RW and row labels identify the source of the TWs. Otherwise the plots
read as in figure 3.11.
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Figure 3.17 (following page). shows the hot zones in all eligible channels from the cross-
recording results for patient “bob”. Thresholds of oy, = 5, 7, = 2min (i.e. four
TWs) and 7, = 0 were used. Green tic marks to the right indicate channels for which no
mapping could be established with the reference window series. Column headings indicate
the source of the RW and row labels identify the source of the TWs. Otherwise the plots
read as in figure 3.11.
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Figure 3.18: Time series of 7, the ratio of threshold crossings in the test window to those
in the first reference window on the first intracranial contact of each recording. Vertical
scale is from 0 to 2, with the horizontal dotted line marking v« = 1. The value of Ny (Syer)
on each channel is shown in the upper right corner of each plot. Red lines indicate the
start of clinical seizures.
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Chapter 4

Information Flow

The dynamical similarity measure studied in the previous chapter gauges the degree of
overlap between the distribution of states in reconstructed phase space and a reference
distribution. It is thus, by design, a relative measure of dynamical change. In this
chapter, our focus shifts to an absolute measure of the information flow in a stationary
process. We begin with a definition of and derivation of a formal expression for the
information flow of a dynamical system in the framework of symbolic dynamics and
information theory. A brief overview of the relevant concepts from the latter can be
found in Appendix A. The practical limitations of this approach will be discussed
and an alternative cumulant-based approach introduced by Deco, Schittenkopf and
Schiirmann [18] will be developed in § 4.2. We then study the behaviour of the
cumulant-based measure on our set of artificial time series and its performance in

anticipating epileptic seizures from EEG recordings.

4.1 A Formal Measure of Information Flow

Information flow on a stationary system can be understood as the extent to which the
past of a process conditions its future or the degree to which information about past
states “flows” forward to play a role in determining that future. This applies equally
well to deterministic and stochastic systems. For example, in a first-order Markovian

stochastic process, the future depends only on the present state of the system; no
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information flows from the past to the future. Equivalently, it measures our residual
uncertainty about the future of a process given perfect knowledge of the process’ past.
Intuitively, information flow decreases with increasing system complexity.

Let us reiterate that in this thesis, we are interested in dynamical systems and
measuring changes in those systems from time series. The bridge between dynamical
systems theory and probabilistic information theory [15,17] is provided by symbolic
dynamics [60]. More specifically, it was Kolmogorov [40] who applied Shannon’s
information characterization to ergodic theory. The following derivation follows the
same lines as that given by Beaulieu [4] and Deco and Obradovic [17].

Our knowledge of any given real dynamical system is frequently limited to a time
series of measurements of the system xi, x5, ... which, for simplicity, we will say are
made at equal intervals. An embedding in m-dimensions of this data, possibly using
delay coordinates to form reconstruction vectors such that r, = (Zpn, Tnir, - - s Tng(m-1)r);
yields a series of vectors 71, 7o, . .. which describe a trajectory in the embedding space.
Takens’ embedding theorem [74,80] tells us that an embedding dimension m and de-
lay 7 can be found such that there will be a one-to-one correspondence between the
reconstruction vectors and states in the system’s true phase space. Furthermore, dy-
namical invariants such as Lyapunov exponents are the same on this embedding as on
the true attractor; topological and geometrical properties are preserved in the embed-
ding. Symbolic dynamics provide an alternate representation of this reconstructed
dynamics.

Let R be the region of the embedding space explored by the system; it contains
all of the system’s (possibly infinite) set of possible states. In terms of ergodic theory,

if ¢ is an ergodic invariant probability measure for the dynamical system, then

/R,u(a:) de =1.

We assume that the system is stationary and ergodic such that given a sufficient

quantity of data, an invariant measure on R can be estimated. A covering of this



82

space by N disjoint subregions R; is called a partition of R, which we label :
B={R}Y,, |JRi=R and RiNR;=0 if i#j (4.1)
i=1
With each subregion R; is associated a symbol o;, thus forming an alphabet A of N
symbols.! This allows us to translate the series of reconstruction vectors into a string
of symbols sy, s9, ..., called the itinerary of the system, such that if r, € R; then
Sp = 0;.

A common convention (which we adopt throughout this thesis) for designating
random variables and their possible values is readily and advantageously adapted
to the symbolic dynamics, though this is not meant to imply that the itinerary is
necessarily random. We let the capital letter A represent a symbol chosen randomly
from anywhere on the itinerary (the event, in the parlance of probability theory)
and a a possible value for that symbol (a possible outcome of the event), where
a € A. The probability of observing symbol a is p(a)®>. A block of n consecutive
symbols beginning at a random point on the itinerary is denoted by A4,,..., A; and
the joint probability of a particular sequence a,, ..., a; is just p(ay,...,a;). Lastly,
the conditional probability of finding the symbol a,, a time r steps after observing
a given block of n symbols is written p(a,i,|an, ..., a1).

A definition of the entropy of the itinerary for a given partition [ follows imme-

diately from (A.4):

HP(A) = =) " p(a) logy p(a). [bits] (4.2)
ac A

Similarly the block entropy of the symbolic dynamics will be

HP(Ay,..., A1) = =Y plan,...,a)log,plan, ... a1) [bits] (4.3)

an,...01,€E A

'Nothing prevents the space R from being infinite. However, to ensure that the
entropies we will subsequently calculate do not diverge, the alphabet A must be finite.
In the case of infinite R, then, the phase space will always be partitioned into some
finite set of subspaces plus everything else.

2These are probability mass functions, not density functions, because the space of
possible outcomes is discrete.
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and the conditional entropy associated with predicting the symbol r steps after a

block of n known symbols or outcomes is

HP(Apiy|Any .o Ay) = —Z P(@nir|n, .., a1)10gy panir|an, ... a1). [bits]

AptryQny ... a1,€ A

(4.4)

As our knowledge of the system’s past increases to include the entire past, such
that the block size n — oc, the conditional entropy (4.4) for single-step prediction

(r = 1) tends toward the point entropy

RP = lim [HP(Api1, Any .. AY) — HP (A, ... AY)] (4.5)
= lim H (A1 |An, ... AY). (4.6)

point entropy

This represents the uncertainty of the next step in the itinerary, using a given partition
[, given perfect knowledge of the infinite past. Since it is the amount by which our
uncertainly of the whole trajectory grows from a given initial condition (A4; € A)
with each additional step, it can also be seen as an entropy rate. To ensure that the
choice of partition 8 will not influence our characterization of the dynamics, however,

we take the supremum of (4.5) over all possible partitions,
hys = sup hP. Kolmogorov-Sinai entropy (4.7)
B

Any partition on which (4.7) is satisfied is called a generating partition. The
resulting measure hys is called the metric entropy or Kolmogorov-Sinai (KS) entropy.
This is the formal measure we were seeking.

KS entropy describes the average flow of information from smaller to larger scales
in that it gives the rate at which bits of information are lost [37]. For example, the KS

entropy of the Bernouilli shift map® can be found analytically to be hys = log,2 =

3The Bernouilli shift map z,,; = 22, mod 1 is a deterministic mapping of the
unit interval onto itself twice (the first-return map looks like saw teeth). Applying the
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1[bit], i.e. one bit is lost every iteration. Use of a partition with a finite number of
subspaces limits the precision of our knowledge of a system’s initial conditions in the
same way as the finite precision of a measuring instrument. The uncertainty in our
prediction of the system’s future increases as the limited number of bits of precision
are used up at a rate given on average by hys.

The KS entropy of a periodic system is zero and that of a stochastic process
divergent. The values for different chaotic systems fall in the broad interval between
these extremes, which makes hy g a useful measure for discriminating between different
degrees of chaos...in principle. In practice, there are two formidable obstacles to
computing this measure on real data: finding a generating partition and taking the
n — oo limit [37]. One strategy for getting around the first obstacle is to divide
phase space into hypercubes of size €. It is impossible to take the supremum over all
partitions and the alternative of taking the limit ¢ — 0 is meaningless on real data,
so instead we seek a scaling region in € on which the estimated value of hyg is more
or less constant. The bigger problem is the need for an infinitely long time series of
stationary data. These are hard to come by. The available, relatively stationary data
must at least be “long enough” to provide sufficient statistics. Among measures used
in non-linear time series analysis, the KS entropy is notoriously data hungry; shorter
series will often suffice for estimating dimensions or Lyapunov exponents while being

inadequate for calculating entropies.

4.2 Cumulant-based Information Flow

A different approach to the study of information flow on a stationary process, which

dispenses with symbolic dynamics and many of the attendant complications of dy-

map to a binary representation of an irrational number—necessarily an infinite string
of 1’s and 0’s—results in loss of the leftmost (most significant) bit and a shifting of
all other bits to the left. Consequently, initially insignificant bits gain in importance
on each iteration; this is an example of sensitive dependence on initial conditions of
chaotic systems.
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namical reconstruction and partitioning, has been introduced by Deco, Schittenkopf
and Schiirmann [18]. The method is well suited to use on real time serial data. The
basic idea is to gauge the statistical independence between the past and future of
the underlying process using estimated values of cumulants, which are coefficients in
the series of expansion of the cumulant characteristic function describing the process.
In what follows, we assume familiarity with a number of concepts from probability
theory in defining the cumulant-based measure of information flow. An brief overview
of this material is found in Appendix B as well as references cited therein.

In a time series obtained by sampling a stationary process, a block of n consecutive
points and a point located r samples later is completely described by a vector of

continuous random variables,
X =(Xy,..., X0, Xosr), (4.8)

the distribution of which is given by the probability density function p(X). If the
block of n points (the past) and the point 7 steps later (the future) are statistically

independent, then the following equation is satisfied:

P(X) = (X1, s Xu) p(Koir), (4.9)
where p(Xy,...,X,) and p(X,,,) are marginal density functions. Let

V() = ¥Y(ay,...,0n, Qniy) (4.10)

be the cumulant characteristic function associated with p(X). If (4.9) is satisfied,

then it is also true that
U(a) = U(ay, ... an) + V(ag,). (4.11)

We let [Cy,..., denote the order-¢ cumulants, where the indices ¢; € {1,....n,n 41}
(examples of this notation are found in Appendix B). The statistical independence

relation (4.11) implies that

Kooty =0 if 34;€[1l,n] and Il =n+r where i4,j5€[l,q. (4.12)

.

constraint on indices in (4.13)
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and this for all ¢, i.e. all orders of cumulants. This observation suggests that we

construct a measure

Z Z Ko, (4.13)

q=1 f1,...,4,

where the prime indicates that the second sum is constrained to indices satisfying
condition in (4.12). Under conditions of statistical independence, this strictly positive
quantity equals zero. In order to study the information flow from the entire past to
the future, one would in principle have to consider this quantity in the n — oo limit.

Assuming the process is ergodic, the moments and hence the cumulants can be
estimated using time averages given sufficient data. Because the computational cost of
the measure increases rapidly with block length n and cumulant order ¢, in practice
we must limit the former and truncate the sum on ¢ in (4.13). Throughout this
study, we take n = 10. Deco et al. [18] suggest truncation after g¢u.x = 4, i.e
estimating cumulants up to and including fourth order. The K ..., are invariant
under permutation of the indices ¢;, eg. K12 = Ky1. In the set of what we shall
call unique cumulants, no two cumulants are equivalent under permutation of indices.
The computational burden can thus be further reduced by summing only on these
unique cumulants. The constraint on (4.13) can be made explicit by letting the last
index always equal n’ = n + r. Finally, a greater balance in the influence of each
order of cumulants on the measure can be achieved by dividing the contribution of
that order by the number of cumulants in the sum.

When we incorporate these various considerations, the proposed measure takes

the following form:

m(n,r) = N2 ZKeln/ + & Z Z Kftyw + ~ N4 Z Z Z Kty

=1 3 0=1 to=1, li=1 bo=101 fL3=1{s
Second Thlrd Cumulants Fourth Cumulants
cumulants

(4.14a)
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or
m(n,r) = ma(n,r) +ms(n,r) + ma(n,r), (4.14Db)

where mgy(n,r) denotes the weighted contribution of the second cumulants to the
measure, i.e. the first term in (4.14a), ms(n,r) that of the third cumulants and so on.
The N, are the number of unique cumulants of order ¢ that are zero-valued under
statistical independence between the past block of n samples and the sample r steps

in the future:

Ny(n) = mn, (4.15)
Ns(n) = g(n +3), (4.16)
Ny(n) = %(nQ +6n+11). (4.17)
By applying the transformation
r—x
4.18
T = — (4.18)

to the data on a given window, where z and o are respectively the mean and standard
deviation of the data in that window, we should obtain zero-mean random variables
((X) = 0) and render the measure insensitive to mere changes of scale. It also makes
the measure dimensionless. The transformation of variables allows us to use the
relatively simple equations (B.9)-(B.12) to compute the cumulants up to fourth order
in term of the moments up to the same order.

It has been shown that various dynamical processes can be distinguished on the
basis of their m(n,r) vs. r curve. Although ideal deterministic chaotic processes “re-
member” their semi-infinite past—again, sensitive dependence on initial conditions—
the presence of noise in real systems will limit the information flow from the past.
The rate at which the information flow dies off with increasing look-ahead depends
on the Lyapunov time of the chaotic system (inverse of the maximal Lyapunov expo-
nent). Markov chains of differing lengths can also be distinguished on the basis of the

look-ahead curve. However, for the purposes of time series analysis using the method
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of sliding windows, it is more practical to have a scalar measure of information flow.

Formally then, we compute

1 Tmax

Z m(n,r). (4.19)

T
max

Mayg (na 7“max) -

Because of this sum over the look-aheads, we call the measure cumulant-based inte-
grated information flow. In fact, we use ry,, = 1 throughout our experiments. In his
experiments on TSs generated with various 1 and 2-D maps, Beaulieu [4] generally
found that a look-ahead of one was sufficient to detect nonstationarities introduced
on these TSs. We have also found in our brief investigations that use of r,,, greater
than 1 does not increase the discriminating power of this measure of the type of data

we will be considering; it only increases the computational cost of the measure!

4.3 Surrogate Data

The measure of information flow defined in the previous section is, by virtue of its
dependence on higher order cumulants, sensitive to differences in nonlinear structure
across multiple stationary time series. This is not to say that differences in linear
structure may not overwhelm the nonlinearities in m,y,. When the method of sliding
windows is used to detect dynamical changes present in a time series, window lengths
are chosen such that we can assume “sufficient” stationarity on any given window.
This allows us—along with an assumption of ergodicity—to estimate the cumulants
of the underlying process.

If the measure is found to differ between windows, one naturally wonders whether
this difference is due to changes in nonlinear structure. A direct comparison of ms,
the weighted contribution of second cumulants to the measure, on the two windows
may suggest identical linear structure, at least within the limits of the measure.
However, we cannot immediately conclude that differences in ms or my are the result
of changes in nonlinear structure. These differences may simply result from statistical

fluctuation of the measure. The question then is how to reject the possibility that the
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same results could be obtained on data sharing the same linear structure but which
retains none of the purported nonlinear structure of the original data. In other words,
how can we assess the significance of fluctuations in higher order moments?

It is impossible to obtain an analytical expression for the distribution of this mea-
sure on most data sets. This is generally true of nonlinear measures. Consequently,
one of the pitfalls of nonlinear time series analysis is to see evidence of nonlinearity
and in particular deterministic chaos in results that can in fact be explained by a
coincidence of autocorrelation in the data. To avoid this trap, analysts employ the
method of surrogate data [82].

Artificial time series preserving certain characteristics of the original data but in
which all other structure is lost are generated. These are the surrogates. The sim-
plest example is that of “scrambled surrogates”, where the raw data are reordered
randomly, thus preserving the marginal distribution of the original T'S but destroying
any statistical temporal correlations. With the surrogates and an appropriate dis-
criminating statistic, one can test the null hypothesis of independence, i.e. that these
data were produced by sampling a fixed probability distribution. This is, of course,
not a particularly useful test.

In this chapter, rather, we will use phase scrambled surrogates generated using
the amplitude adjusted Fourier transform algorithm [82] with iterative refinement
described by Schreiber and Schmitz in [75] and implemented as the surrogates
routine in the TISEAN package [38]. This method produces surrogates with the
same distribution and Fourier amplitudes as the original data, which allow one to
test the null hypothesis that the data was produced by a linear Gaussian process
rescaled by the action of an invertible, static measurement process. Any nonlinearity
that might be present in the data would thus be introduced by the latter. We limit
the number of refinement iterations to 100. The routine stops if the surrogate series
converges before that, i.e. if the change in the distribution or power spectrum between

iterations is less than machine precision. We have accepted the default option of exact
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duplication of the distribution (that is the stopping criterion) over exact duplication
of the power spectrum.

There are two ways to compare the value obtained for a given discriminating
statistic, which we will denote v, on the raw or test data and those obtained on the
surrogates. If y[i] is the value of v computed on the i " surrogate, one can consider the
mean ugs = (7y[i]) (angle brackets indicate averages over all surrogates) and standard

deviation

e = {61 - 02 (4.20)

of the surrogate results. Having chosen an acceptable level of significance, Student’s

t test can then be used to ascertain whether the null hypothesis can be rejected.
Use of statistical tests like Student’s ¢ require certain assumptions to be made about
the distribution of the measure in question v on the raw and surrogate data. If the
validity of these assumptions is in question, it may be preferable to use rank-order
statistics. In this case, for a one-sided test, if N surrogates are produced and the
value of v on the raw data is greater than on all the surrogates, there is a 1/(N + 1)

chance of falsely rejecting the null hypothesis.

4.4 Experiments on Artificial Data

The purpose of the experiments on the artificial data generated using the Bondarenko
model was to assess the influence of window length and sampling rate on the ITF
measure’s sensitivity to different degrees of chaos in the TSs. Some tests were also
done using additive noise, the results of which can be readily summarized by saying
that for noise levels up to as much as 20% of the rms amplitude of the signal, there
was no appreciable impact on the discriminating power of the measure. The ITF value
decreased on all T'Ss with increasing noise as the statistical dependencies between past

and future were gradually eroded by the latter.
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4.4.1 Methods

The same procedure was followed for both the ¢ series and the e series. Hereafter,
we will just say “the control parameter”. For each value of this parameter and each
sampling interval At € {1.0,10.0}, ITF was computed on one window of length ¢
samples from each of the 25 TSs in the data set for that combination of control
parameter and At. Two window lengths, ¢, = 1024 and 8192, were considered.
Measure parameters used in the computation were n = 10 and r,x = 1 (single-step
prediction).

With the exception of the results in Fig. 4.3 where a lag of 7 = 10 was introduced,
consecutive samples were used in forming the blocks of n+1 points (i.e. 7 =1). The
experiment with the longer lag allows us to compare the influence of sampling rate to
that of using non-consecutive points in forming the blocks on the value of the measure.
On over-sampled data, we would want to be able to introduce an appropriate lag to
recover sensitivity to higher order correlations; this test explores that possibility.

Furthermore, for each of the 25 windows, 49 surrogates were generated. The
measure was computed on these surrogates using the same measure parameters. Our
use of surrogates will, in fact, not be so formal; they serve more as a “sanity check”
for observations we will make about the information flow measure’s sensitivity to
nonlinear structure we know to be present in the artificial data. On the EEG data,
we have in the end not used surrogates systematically. As we shall see, practically all
of the changes in the measure which might be used to anticipate a seizure stem from

spectral changes.

4.4.2 Results and Discussion
4.4.2.1 The c Series

Using a window length of ¢, = 1024 on the TS sampled at At = 1.0 (Fig. 4.1),

considerable overlap in the results for each value of ¢ obscures the difference between
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Figure 4.1: |IF results on the ¢ series with £, = 1024 and At = 1.0. The mean value obtained for
Mayg (10, 1) and the weighted contribution of each order (mq, m3 and my4) on the 25 windows for
a given value of c is indicated by a black dot and the SD by the black bars extending from that
dot. The maximum and minimum values of mg,, M2, M3 and my obtained on the surrogates
were recorded for each window. The red dots, connected with red lines to improve readability of
the graph, indicate the averages of these 25 maxima and 25 minima for each value of c.
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the different TSS. Nonetheless, the average values of m,y,, ms and my already show the
anticipated decrease in information flow with increasing Lyapunov exponent, which
increases more or less monotonically ¢ on our data (cf. Fig. 2.5). As the degree of
chaos increases, information about the past is lost more rapidly and so less information
flows from the block of n samples to the future. With longer windows (Fig. 4.4) and
the same sampling rate, the SDs decrease sufficiently to allow us to distinguish three
categories of TS: ¢ € {1}, ¢ € {2,3} and ¢ € {5,10}. Here the surrogates appear to
reproduce second-order results quite well and still overlap much of the range of my,.
The third-order results are about two orders of magnitude smaller than the second
and fourth order results and there is no apparent trend. Furthermore the surrogates

fully contain even the error bars on these results. Increasing window length by a
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factor of eight (Fig. 4.4) decreases the mgy values by another order of magnitude while
producing little effect on the other orders. Third-order cumulants thus appear to
deviate from zero only because of statistical fluctuations in the measure.

We were initially concerned that this result stemmed from a implementation error.
However, the same code had been used by F. Beaulieu in [4]. In his thesis, ITF was
computed on an artificial time series consisting of N = 16384 random deviates on
[0, 1] followed by N iterates of the tent map and finally N iterates of the binary shift
map (Bernouilli map). It was precisely the differences in mgs between the segments
that proved necessary to distinguish the tent map segment from the others.

While we cannot prove that mj3 tends to zero on data produced by the Bondarenko
model, or for that matter on EEG data, we can make some observations about third
moments in general and the distribution of these data. The third moment of a 1D
distribution characterizes the degree of asymmetry about the distribution’s mean [66].
It should be fairly evident from the sample model output in Figs. 2.2 and 2.3 that this
signal is symmetrical about zero. To check this, we concatenated the 25 time series
for ¢ = 2 and computed histograms from the resulting 204 800 data for each of the
10 outputs (neurons). These histograms (not shown here) were indeed symmetrical
about zero, although by no means normal; this distribution is preserved in the phase-
shuffled surrogates we have used. It is also known that “the third-order moment of
a normal process with zero mean is identically zero...[because| the joint density of
three jointly normal random variables with zero mean is symmetrical with respect
to the origin.” [62]. In light of symmetry considerations such as these, the apparent
tendency of ms3 towards zero on these data is less alarming.

For ITF computed on data sampled at a lower frequency or by introducing a delay,
we see the average fourth-order results rise clearly above the average maximum of
surrogates. In Fig. 4.2, windows of /,, = 1024 data sampled at intervals of At = 10.0
were used with no delay, whereas in Fig. 4.3 a delay of 7 = 10 was introduced in

windows of £, = 8192 data sampled at At = 1.0 intervals. The results in both cases
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Figure 4.2: IIF results on the ¢ series with ¢, = 1024 and At =
10.0. Further details in the caption to Fig. 4.1.
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are very similar except for mg, which is still apparently lost in the noise floor. This
similarity is important because it means that use of a delay on oversampled data is
sufficient to access the sensitivity to higher order correlations of the process that a
more appropriate sampling rate would have produced.

Computing ITF on data sampled at intervals much shorter than the characteristic
time scales of the dynamical processes underlying the TS makes the measure over-
sensitive to short-range correlations; a lot of information flows from the n points in
the past to the future point because the system has hardly changed. This explains
why the average values obtained without using a lag or on data sampled at a lower
rate are about twice those obtained using samples more distant in time. This is also
reflected in the fact that with a long window of At = 1.0 data, second-order results
on the surrogates match the average result on the raw data closely (Fig. 4.4) but this
is lost when a delay is introduced (Fig. 4.5). In the former case, the IIF measure is

dominated by linear correlations which, by construction, are all that matter in the
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Figure 4.3: |IF results on the ¢ series with ¢, = 8192 and At = 1.0
where a lag of 7 = 10 has been introduced in computing the
measure. Further details in the caption to Fig. 4.1.
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surrogates. This is of course related to the problem of choosing a delay for delay
coordinate embedding in dynamical reconstruction.

The SDs in these results are similar to those obtained with the longer windows
on data sampled at intervals of At = 1.0 with no delay (Fig. 4.4). This suggests
that total window duration has the most influence on variations in IIF values from
window to window for a given value of the control parameter and not just the number
of samples in the window; the windows in Fig. 4.4 and Fig. 4.2 are about 10 times
longer in duration that those in Fig. 4.1. Windows longer in duration “see” more
of the overall dynamics of the system and so yield more consistent values for ITF on
stationary T'S.

Finally, the ITF results for different values of ¢ using long windows ({, = 8192
samples) of data sampled at intervals of At = 10.0 (Fig. 4.5) are significantly distinct,

even the error bars now clear the average surrogate maxima for my, the msy results
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Figure 4.4: |IF results on the c series with ¢, = 8192 and At = 1.0.
Further details in the caption to Fig. 4.1.
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for raw and surrogate data are once again very similar and the overall decrease in
information flow with increasing c¢ is maintained. One must keep in mind that these
results were obtained using eight times as many data points as those in Fig. 4.1, on
windows spanning an interval 80 times longer. So while it is satisfying to see such
clear discrimination, it is not that surprising.

In principle, linear correlations in the random process do not influence higher order
cumulants. For example, we see a correction for these correlations in the expression for
fourth-order cumulants (B.12), where combinations of second moments are subtracted
from the fourth moments to yield the fourth cumulants. Third and higher order
cumulants in perfect phase-shuffled surrogates—in which the linear correlations and
distribution of values are perfectly preserved and all other correlations destroyed—
would equal zero in the n — oo limit. Another way of saying this is that in our
surrogates, in contrast to the raw, chaotic data, no information is conveyed through

higher order correlations. When we can only estimate the cumulants of a process from
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Figure 4.5: IIF results on the ¢ series with ¢, = 8192 and At =
10.0. Further details in the caption to Fig. 4.1.
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finite amounts of data, as is always the case in practice, and must limit the block
length n to a manageable length, this correction must be imperfect. This explains in
part why the values of m, on the surrogates are clearly not just fluctuations above
zero; they preserve the trend observed in ms. As the number of data in and duration
of the windows used in estimating the cumulants increases, the value of m, on the raw
data appears to stabilize (compare Fig. 4.4 and Fig. 4.5) whereas the average maxima
on the surrogates continues to decrease. On the other hand, the average minima on
the surrogates seem to have stabilized and still show the same trend. This would be

a consequence of limiting n to ten.
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4.4.2.2 The e Series

In these TS, it is the frequency and duration of bursts of periodicity that increase
with increasing values of e. Figures 4.6 through 4.9 show the results obtained with
different window lengths and sampling intervals. All of the remarks from the previous
section concerning window length and duration, the behaviour of mgs, the values of
my for the surrogates and the influence of sampling rate apply to these results as
well. The main difference we note is the persistence of large error bars in m, for the
higher values of e even when ¢, = 8192 and At = 10.0 (conditions under which the
error bars had all but vanished in Fig. 4.5). As more and more of the TS becomes
periodic, we see a corresponding increase in information flow; the future of a periodic

signal is entirely dependent on its past.



Figure 4.6: IIF results on the e series with ¢, = 1024 and At = 1.0.
Further details in the caption to Fig. 4.1.
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Further details in the caption to Fig. 4.1.
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Figure 4.8: IIF results on the e series with ¢, = 1024 and At =
10.0. Further details in the caption to Fig. 4.1.
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Figure 4.9: IIF results on the e series with ¢, = 8192 and At =
10.0. Further details in the caption to Fig. 4.1.
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4.5 Experiments on EEG Recordings

In previous studies, the cumulant-based measure had been computed on a single, short
TS of EEG data ending just before a clinical seizure [18] and two TS of manually
corrected intervals between interictal spikes (interspike interval (ISI)) [4], which are
characteristic of epileptiform brain activity, also ending just prior to a seizure. Results
of these experiments were encouraging but inconclusive. This is the first time the
measure has been computed on a large set of EEG recordings from epileptic brains.
We will be investigating the measure’s overall behaviour, its strengths and weakness

and performance in anticipating epileptic seizures.

4.5.1 Methods

We have used the results of the previous section as a guide in choosing window lengths.
Fair to excellent discrimination of our artificial time series, which are characterized by
varying degrees of chaoticity or intermittency and qualitative similarity to EEG sig-
nals, was obtained using the cumulant-based measure of information flow on windows
spanning an interval of about 10* time units. We had identified several strong peaks
in the spectra of these data, the strongest having a frequency of approximately 0.02
[time units| ™" or a period of 50 time units (Fig. 2.4). Thus, on the order of 200 cycles
of this oscillation would be contained in a typical window. If we associate this dom-
inant oscillatory component with the approximately 10 Hz alpha rhythm [1,8], this
would be equivalent to 20 seconds of EEG data or 4 x 10® samples of data digitized at
200 Hz. We settled on window lengths of /,, = 8192 samples or 42 sec and /,, = 2048
sample (the FFT algorithm used as part of the surrogate generation routine requires
that £, = 2", n € ZT).

The cumulant-based information flow measure (4.14) was computed on nonover-
lapping windows of these lengths spanning the entirety of every signal in every record-
ing in the data set using various combinations of values of the measure parameters:

block lengths of either n = 5 or n = 10, maximum look-aheads 7., of 1 or 5 and
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delays 7 of 5 or 10 samples. A quick survey of autocorrelation functions computed
using the first 8192 samples after the starting point designated for reference window
1 (see Fig. 2.8), i.e. about 5 min into the recording, on the first intracranial signal
of several recordings revealed first zero crossings of this function at between 20 and
40 samples. Our choice of 7 values was guided by this observation. Although the
delay is necessary to reduce the influence of short range correlations, results should

not depend strongly on the precise value used and indeed do not appear to do so.

4.5.2 Results and Discussion

For the same values of n, r.x and 7, results for the two different window lengths were
quite similar, with greater statistical fluctuation on the shorter windows as one would
expect. Interestingly, values obtained with ¢, = 2048 seldom dipped below those
obtained on the longer windows. The exception to this is on sharp peaks, which
generally extend to higher values on the longer windows. We will concentrate on the
Ly, = 8192 results.

One of the main difficulties with this measure is immediately apparent in Fig-
ure 4.10, which shows its variation over the LA channel of amysez01. As the measure
is bounded only from below, regions of the TS with strong periodic components—such
as frequently occur during seizures—will yield high values of the measure. By consid-
ering the full range of values obtained on a given series, less pronounced changes that
might occur in the putative preictal period are obscured. Use of a logarithmic scale
can help overcome this effect, but more interesting features are seen by “zooming in”
on the low end of the scale, as we have done in Fig. 4.11 and subsequent figures.

There is a rise in Mgy, before the seizure but it may be surprising not to see a
very strong response in the measure during the seizure. There is a strong rise in the
weighted value of my during the seizure, which then gradually returns to the levels
seen at the start of the recording. Since this component is only a third of the total

Mave signal and m3 and my do not rise during the seizure, the fluctuation in my is
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Figure 4.10: Full range (A) of m,y,(10, 1) obtained using a delay of 7 = 10 and ¢, = 8192
on channel LA (the first intracranial signal) of amysez01. A logarithmic scale (B) reveals
a possible preictal trend. Red vertical lines mark onset of clinical seizures.
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not easy to pick out in the average measure. A strong periodic component will have
this influence on my rather than the high orders. If we consider only the aggregate
measure, Mgy, it could be said that we have traded sensitivity to spectral changes
for sensitivity to high order correlations; this trade-off may not prove fruitful. We
should recall that this measure is not sensitive to changes in signal amplitude that
are slow relative to the window length.

In Fig. 4.11, we see a rise in msy which echoes the changes observed in the
amplitude-frequency analysis of the same data (cf. Table 2.2). The same trend is
even more pronounced in, for example, the LA3 channel data from the same record-
ing (Fig. 4.12). In the latter results, we also clearly see a “bump” in the mj3 and
my values before the seizure sufficient large to persists in mg,. It is unclear to us
why preictal fluctuations in the higher order components do not persist and increase
during the seizure.

One would like to attribute these fluctuations in the higher order cumulants to
preictal changes in brain dynamics, to a gradual build-up of synchrony and decrease
in complexity and an attendant rise in information flow. The method of surrogate
data described earlier allows us at the very least to avoid making such a claim if the
fluctuations can in fact probably be caused by linear correlation of the data. We have

not systematically computed surrogates on all of the EEG data. One reason for this
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Figure 4.11: Values of m,,,(10, 1) with breakdown into weighted second, third and fourth
cumulant contributions—msy, m3 and my—obtained using a delay of 7 = 10 and ¢, =
8192 on channel LAI of amysez01. The vertical scale is adjusted in each graph to highlight
variations in the measure floor. Red lines mark onset time of clinical seizures.
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is that, to produce and run the computation on a reasonable number of surrogates, it
would have taken months to complete even a single run of the experiment, given and
length and number of TS involved.. Furthermore, the influence of interictal spikes
on the phase-shuffled surrogates was a concern (a point raised in discussions with
M. Le Van Quyen and J. Martinerie). Isolated large amplitude spikes in the raw
data can produce multiple large spikes in the surrogates, a sort of ringing artifact of
the Fourier transforms, and these will likely influence the value of measures on these
surrogates [75]. On the basis of the difference between values on raw and surrogate
TS, one might conclude that nonlinearity is present when in fact, the surrogates are
clearly, qualitatively different from the original TS. The cost of systematic use of
surrogates seemed to outweigh the insight they might bring to the analysis. It was
also apparent that on many of the recordings, there was either no appreciable preictal
trend in the higher order cumulants or that any trend in m,,, was due primarily to

changes in mso, i.e. autocorrelation in the data.
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Figure 4.12: Values of m,,,(10, 1) with breakdown into weighted second, third and fourth
cumulant contributions—msy, m3 and my—obtained using a delay of 7 = 10 and ¢, =
8192 on channel LA3 of amysez01 and surrogates. 19 surrogates were generated per
window; the maximum value of the measure and its components on the surrogates is
indicated by the thin red line. The vertical scale is adjusted in each graph to highlight
variations in the measure floor. Red lines mark onset time of clinical seizures.
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Nonetheless, we have included two examples of TS on which Ny = 19 surrogates
were computed on each window, signal LA3 from amysez01 (Fig. 4.12) and signal LA
from bobsez01 (Fig. 4.13). The maximum surrogate value is shown. Using one-sided
rank order statistics, a value for the raw data above this maximum would indicate
that the null hypothesis (i.e. data generated by a linear Gaussian process filtered by
a possibly non-linear measurement function) could be rejected at the 95% confidence
level. In Fig. 4.13, we see a slight drop in my which we would have anticipated from
the amplitude-frequency analysis of this recording presented in Chapter 2.2. That
does not explain, however, the higher values and overall rise in m3 and my4 in the ~ 30
min before the seizure. Surrogate data fails to reach similar levels, so it would be
reasonable to think that these fluctuations were the result of changes in the nonlinear
structure underlying the TS.

We do observe preictal increases in the measure on some of the recordings, but



106

Figure 4.13: Values of m,y4(10, 1) with breakdown into weighted second, third and fourth
cumulant contributions—msy, m3 and my—obtained using a delay of 7 = 10 and 4, =
8192 on channel LA3 of bobsez01 and surrogates. 19 surrogates were generated per
window; the maximum value of the measure and its components on the surrogates is
indicated by the thin red line. The vertical scale is adjusted in each graph to highlight
variations in the measure floor. Vertical red lines mark onset time of clinical seizures.
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at the end of the day, it is the performance of the measure in anticipating epileptic
seizures on these recordings which we wish to evaluate. Can these fluctuations be
detected in a timely, automated manner? That will be our concern for the remainder
of the section. A second problem arises here, in direct opposition to what should
be one of the strengths of this measure. As mentioned at the head of this chapter,
the cumulant-based IIF is an absolute rather than a relative measure. The increase
in neuronal synchrony believed to precede a seizure should produce an increase in
the absolute value of this information flow measure. It is computed on each window
independently of the others. In light of this, one might imagine that some absolute
threshold value in m,,, might be determined for a given patient or group of patients.
When the measure rose above this threshold and remained there for a certain time,
the system would raise a flag in anticipation of a seizure.

To get an idea of how this might work, we proceeded as follows. A straight line
was fit to the myy,, results for every signal in the recordings with seizures on an
interval selected by hand for each recording. In choosing the interval, we generally
tried keep as much of the preseizure data as possible while avoiding gaps and in some
cases favouring results closer to the seizure. If the slope m of the fit was positive, it
was recorded. We denote the number of signals which yield a positive slope on each
recording as N,. Let m, denote the average of all the positive slopes obtained for a
given recording. As a rough indicator of the possible rise in the measure floor over
the interval on this recording, we use v = My (tend — tstart) /2 Which is the rise of the
line over half the interval. Lastly the average value of the measure on the interval
Mavg Was also recorded. These values are shown in Table 4.1.

On the recordings with low N, we already anticipate problems with the threshold
approach. Based on the values of v for each patient’s recordings and favouring those
recordings with a high N, we chose a threshold to try for that set of recordings.
Using a time threshold of 7y, = 4 windows and no grace period along with these

threshold values, we find the hot zones depicted in Fig. 4.14 (the caption to Fig. 3.11
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Positive slope statistics on recordings with seizures. See text for details.

. Fit Interval _

ave | Lhreshol

Recording Start | End N, y Mavg reshold
amysez01 0 2500 | 59 | 0.12 | 0.25
amysez02 | 2000 | 7780 | 54 | 0.097 | 0.14 0.1
amysez03 | 8000 | 10000 | 47 | 0.052 | 0.11
bobsez01 500 | 4000 | 14 | 1.54 | 2.29
bobsez02 0 7000 | 12 | 0.23 | 1.18 0.3
bobsez03 0 10000 | 31 | 0.51 | 1.45
carlsez01 | 8000 | 10000 | 32 | 0.22 | 0.35
carlsez02 | 2000 | 8000 | 28 | 0.13 | 0.17 0.15
carlsez03 0 10000 | 35 | 0.052 | 0.17
dansez01 0 12500 | 49 | 0.12 | 0.42
dansez02 0 15000 | 43 | 0.076 | 0.20 0.15
dansez03 0 8000 | 15 | 1.00 | 1.03
evesez(1 7000 | 15500 | 59 | 0.35 | 0.37
evesez0?2 0 2560 | 50 | 1.22 | 0.92 0.2
evesez03 | 2250 | 5000 | 19 | 0.027 | 0.25

N, is the number of signals which yield a positive slope
~v is the rise over half of fit interval
Mayvg 1S the average value of my,, on the fit interval
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on p. 66 explains in detail how to read these figures). Things start out well with
the amy recordings, as usual. After that, however, the results are less encouraging.
We see a tremendous number of free hot zones in all of the recordings, including the
awake series. There is an overall increase in number and duration of hot zones in the
lead up to the seizures in carlsez01 and carlsez02.

Absolute thresholds would of course be more meaningful if the measure could be
normalized or at least un upper limit established, but this problem is directly related
to that of finding the distribution of the measure on data from a given process. When
a good model of the governing dynamics of a system is available—which is not the case
here—synthetic data can be generated and the distribution estimated numerically. It
would be futile to try to “optimize” the thresholds for the few recordings we have for

each patient.? Better to try a different approach.

With the exception of the cross-recording experiments, the EEG results of the

previous chapter were obtained using a unique threshold for each channel on each

4] say this having, of course, spent far too much time in the quest for the “magic
threshold” that would make the preictal period leap off the graph. It doesn’t appear
to exist.

Figure 4.14 (following page): Intervals on which m,,, remains above the threshold selected
for that patient’s recordings, myy, for at least 7;, = 4 windows are defined as “hot zones™.
These zones are indicated in the figure for each signal from every recording. If m,,, dips
below myy, the hot zone ends (i.e. no grace period). Results for n = 10, rpax = 1, 7 = 10
and ¢, = 8192. Results from intracranial EEG channels are in black, surface EEG is in
purple. Red lines mark the start of clinical seizures. Blue bars along the bottom show the
location and extent of gaps in the recording. Black tic marks on the bottom edge delimit
the length of the recording, the full width of the box corresponding to 420 min. Black tic
marks on the left-hand border indicate the extent of the signals for that recording; a box
can accommodate a maximum of 64 signals. Generally, channels in the top half of this
range were in the right hemisphere and those in the bottom the left. Ineligible channels
are marked with a green tic on the left (this mark overwrites the black mark in some
cases). Those on which the IIF algorithm failed for any reason are marked with a green
tic on the right.
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Figure 4.15: Percentile rank of baseline standard deviation values o
for my,, for each patient’s recordings.

100

JEE TG

14

0.1 +
0.01 -

0.001

Baseline Standard Deviation

0.0001 ] \ \ 1 1 f f f
0 10 20 30 40 50 60 70 80 90 100
Percentile Rank

recording. As we pointed out in our discussion there, the mean and variance of
the similarity values on the reference windows were generally very similar across all
the channels in a recording. Indeed, the cross-recording experiments demonstrated
that a good reference window—and hence its baseline statistics—was generally good
across all recordings for the patient in a similar state of arousal. We should give the
information flow measure a fair chance by putting aside its “absolute” nature and
using some sort of baseline statistics. Taking the first 8 windows after the start of
the first reference window (see Fig. 2.8) as our baseline results for each channel, we
compute the average p1 and standard deviation o of, to begin with, mgy,.

Contrary to what we observed with the similarity measure, here the values of both
statistics vary enormously from signal to signal within a recording. Figure 4.15 shows
the percentile rank of different values of o for each of the patient’s recordings (i.e. its
rank in the approximately 300 baseline values from the signals in those recordings).
Even on the “normal” percentile range of 25-75, o covers two orders of magnitude! We
notice that the values chosen for the threshold approach to anticipation correspond
generally to the 50 percentile level. ~ The values for p (Fig. 4.16) are similarly
distributed as is to be expected when m,,, fluctuates widely on the baseline; whatever

strong spikes there are in those 8 windows will dominate the mean. The variance is
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Figure 4.16: Percentile rank of baseline average values p1 for my,
for each patient’s recordings.
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then just related to the difference between those spikes and the remaining, small
values. Because of this characteristic of the baseline statistics, it is pointless to use
the “n sigma’s from the baseline mean” approach to identifying hot zones. Since the
baseline mean is generally inflated by spikes, it is unlikely that the measure will rise
significantly above it for a sustained period of time. We tried scaling down p and o
in various ways as well as simply using p times a constant factor as the threshold.
For myy,, the results were always much worse that those obtained with fixed patient
thresholds; signals seemed to be all hot or all cold with clumps of each alternating in
most recordings. On the other hand, using oy, = 2 and 7, = 4 windows and indeed
the usual “sigma’s from mu” approach on the ms results produced considerably more
satisfactory results as shown in Fig. 4.17. When a seizure in this data set is clearly
announced by changes in IIF, it would appear to be the linear terms in the measure

doing the talking.

The same exercise with the third order cumulant term mj3 produces basically no
hot zones when the same threshold parameters are used. Various absolute thresholds
produced what seemed like random bands of hot zones and a peppering of isolated hot

zones. Results were similar with my, with echoes of the ms results. We have found the
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main factors decreasing the visibility of overall trends in this measure to be the large
fluctuations in the terms involving higher order cumulants and the presence of large
spikes in the measure. Although the statistical fluctuations of the higher order terms
could be reduced by using larger windows, one must not lose sight of the fundamental
assumption of stationarity on any given window. Perhaps we could “smooth out”
the fluctuations with a moving average filter or some interpolation scheme such as
fitting a Bezier curve to a moving window of results? Even if only causal filters are
used (this is supposed to be a predictive measure, after all), these methods add to
the “inertia” of the measure, making it less responsive. We nonetheless did examine
moving averages of the result; there was no improvement in performance.

In light of results obtained with this measure and the comments above, it would
be pointless to compute and present further “performance indicators” such as aver-
age anticipation times, number of active channels, etc. as was done in the previous
chapter (Tables 3.1 through 3.3). There, such statistics were in part necessary to
allow comparison with previously published results; there are no such results for the
cumulant-based IIF. We have ample material to allow a performance comparison of
the two measures in the concluding chapter. With the exception perhaps of amy-
sez03, the information flow measure would appear to be sensitive to the same preictal

changes as the dynamical similarity measure. We have convincing evidence that these

Figure 4.17 (following page): Hot zones using my only (o, = 2, 7y, = 4, 7, = 0, only
deviations above the baseline mean are considered). Results for n = 10, rpa. = 1, 7 =10
and ¢,, = 8192. Results from intracranial EEG channels are in black, surface EEG is in
purple. Red lines mark the start of clinical seizures. Blue bars along the bottom show the
location and extent of gaps in the recording. Black tic marks on the bottom edge delimit
the length of the recording, the full width of the box corresponding to 420 min. Black tic
marks on the left-hand border indicate the extent of the signals for that recording; a box
can accommodate a maximum of 64 signals. Generally, channels in the top half of this
range were in the right hemisphere and those in the bottom the left. Ineligible channels
are marked with a green tic on the left (this mark overwrites the black mark in some
cases). Those on which the IIF algorithm failed for any reason are marked with a green
tic on the right.
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are changes in the linear structure of the data.

4.6 Cross-Channel Information Flow

Finally, we would like to briefly discuss the results of experiments done with cross-
channel integrated information flow (XIIF). Rather than taking blocks of n+ 1 points
(with a possible delay between points) from the same TS, the final, future point is
taken from the same time in another TS. The idea behind the experiment was to
detect synchronization across spatially distant brain regions in the preictal period.
In our experiments thus far, this spatial dimension has been entirely neglected in
favour of temporal correlations. Increased synchronization would result in increased
statistical dependence between two distant signals.

Initial tests with toy systems like the coupled Rossler oscillator demonstrated that
XIIF could track the change from independent oscillation to phase locked oscillation
produced with increased coupling strength and otherwise detected by means of the
Hilbert transform [71]. We then generated two TSs using the neuron 1 output from
each of two mean-field coupled Bondarenko brains (m = 10 neurons each, 7 = 10,
¢ = 5.0 in brain 1 and ¢ = 1.0 in brain 2, e = 0.0 in both). In other words,
brain 2 is the “less chaotic” brain. Brain 1 was coupled unidirectionally to brain 2:
Ty, = 0 and Tj5 was increased from 0 to 10 in steps of 0.1 (cf. equation 2.7). At
each coupling strength, 12000 output steps were recorded (At = 1.0 with integrations
step size h = 0.01). The same matrix of coupling coefficients and initial conditions
were used for both brains; we verified that the outputs were indeed chaotic under
these conditions. On each TS separately, mayg(10,1) was computed on windows of
Uy, = 8192 samples, a shift of /5 = 2048 and a delay of 1 (not the best choice in
retrospect). Using the same measure parameters, the XIIF was then computed two
ways: (1) taking the future point from the forced brain and (2) taking the future point
from the free brain. We denote these two cases as Free|Forced (i.e. forced brain—brain

1—conditioning free brain) and Forced|Free. The results of these computations are
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Figure 4.18: Normal IIF and cross-channel information flow computed on artificial time se-
ries generated with coupled Bondarenko models, “brains”, of varying degrees of chaoticity.
See text for details.
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shown in Fig. 4.18. While there is no appreciable change in the (self) flow, we see an
increase in cross flow, especially Free|Forced, with increased coupling strength. The
rms amplitude of the free, less chaotic signal is about one-fifth that of the forced signal.
Consequently, even with a mean-field coupling constant of 775 = 10, the influence on
the driven oscillator is still quite weak. The cross-information nevertheless detects
the change.

Our experiments did not go much beyond that although we did compute the
cross-channel 1m,,,(10,1) on every channel pair on every recording in our EEG data
set. We used windows of /, = 8000 with a shift of /; = 6000, no surrogates and
a delay of 7 = 100 (another questionable choice, in retrospect). The result: for
the most part, the XIIF values resemble the same-channel results. In particular,
far from a seizure the signals never appear to be “independent” (i.e. ma, = 0).
Synchronization of distant brain regions is vital for normal brain function; an epileptic

seizure is synchronous abnormal discharging of large groups neurons. What exactly
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brings about this synchronization, what drives a the brain toward seizure is still not
fully understood. Recent work on synchrony in the brain is shedding light on the
mechanisms of epilepsy, as well as offering a very promising new approach to seizure
anticipation [45]. Cross-channel information flow, however, does not appear to have

a great deal more to tell us here than conventional IIF.



Chapter 5

Closing Discussion and Conclusion

We have studied two measures of dynamical change, each motivated by different the-
oretical considerations and involving different approximations to decrease sensitivity
to measurement noise or computational cost. The behaviour of each measure was
first examined using artificial time series as control data. Epileptic seizure antici-
pation is a problem which has received renewed attention with the introduction of
methods of nonlinear time series analysis. We looked for changes in each measure on
EEG recordings prior to clinical seizures and on seizureless recordings from the same
patients several hours in duration.

The first measure we considered was based solidly in dynamical systems theory.
The similarity in the dynamics underlying nonoverlapping segments of a time series
was gauged by the overlap in the distribution of states in phase spaces reconstructed
from these segments [42]. The use of intercrossing intervals (ICIs) to form the em-
bedding vectors and projection onto the eigenvectors corresponding to the largest
singular values essentially serve as nonlinear filters, increasing the measure’s sen-
sitivity to changes in the system’s most significant degrees of freedom and—as a
bonus—considerably reducing the computational burden of the measure. We call
this a relative measure, because it explicitly involves comparison with a reference
dynamics. It is strictly positive and normalized to a maximum value of unity.

We then examined measures of information flow, both the formal and the prac-

tical. It is the extent to which the future depends on information about the past
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which is being measured. A formal measure of information flow on dynamical sys-
tems, the Kolmogorov-Sinai (KS) entropy, was defined and the problems associated
with its estimation discussed. The cumulant-based integrated information flow mea-
sure [4,18] proceeds from the assumption that windows of data on the time series are
“sufficiently” stationary and can be represented as a vector of random variables, i.e.
a random process. If the last variable in the process, occurring r steps/samples after
the previous one, is statistically independent from all the previous random variables,
all cumulants simultaneously involving both this variable and any of the others will
equal zero. This was the basis of the IIF measure, although as a result of approx-
imations introduced to make its computation feasible, statistical independence is in
practice only the most probable reason for a result of zero.

Insofar as it does not involve direct comparison between segments of the time
series and hence does not require a prior: identification of a reference dynamics, this
measure is absolute. Unlike KS entropy, it does not measure information flow in bits
but rather on a strictly positive dimensionless scale. An upper limit for this measure
has not been found analytically. This and the strong statistical fluctuation observed
even with relatively long windows of data make it difficult to establish any useful

absolute thresholds for this absolute measure.

5.1 Experiments with Artificial Data

The asymmetric neural network with delay studied by Bondarenko served as a source
of artificial time series for comparison of the two measures on stationary control data.
For parameter values in the chaotic regime, this model produces output qualitatively
similar to EEG signals. We verified that the “degree of chaos”, reflected in maximal
Lyapunov exponent estimates, increased with increasing global coupling strength, c.
Although whether a given realization of the network (random coupling matrix) will
produce chaotic output for values of ¢ in the ostensibly “chaotic regime” seems to

depend on the initial conditions, the data set retained for subsequent experiments
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did consist of chaotic solutions. We also examined the influence on the measures’
behaviour of intermittent bursts of quasiperiodicity, increasing in duration and fre-
quency with network asymmetry e.

The discriminating power of the information flow measure on these artificial data
was greater overall than that of the similarity measure for the same window length.
Using the longer sampling interval of Atz = 10.0 on the c series, what little difference
there was between ¢ values on the similarity results in fact vanished; we said the data
had been “undersampled”. However, the very same sampling interval or an equivalent
delay actually improved IIF results considerably and increased the significance of
nonlinear contributions, as revealed by comparison with phase shuffled surrogates.

It is equally important that the measures remain fairly stable on stationary data.
In that respect, similarity can be said to have performed better than IIF. If we
consider the ¢, = 8192 results for At = 1.0, error bars on the former for c.. = ¢
were easily less than 1% of full scale, whereas those on the ITF results were over 10%
of the mean result for all values of ¢. We attribute these two differences—greater
discrimination between levels of chaoticity for IIF and higher stability on stationary
data for similarity—in large part to the nonlinear filtering steps in the latter. In
addition, for a constant window length, statistical fluctuations of cumulant estimates
increase with the cumulant order being estimated. Since the contributions of each
order are weighted equally, it is not surprising that the IIF measure fluctuates more.
Differences such as these are precisely what we speculated would lead to improved
anticipation of epileptic seizures by combining the measures.

The results on the e series illustrate the importance of using windows of sufficiently
long duration, since the apparent stationarity of a system is a question of time scale.
To capture both the chaotic and quasiperiodic phases of the intermittent behaviour
found in these TSs requires adequate sampling over a sufficient period of time. Both
measures were remarkably robust in regards to additive or “measurement” noise. At

levels less than 20% of the unperturbed signal’s rms amplitude, the discriminating
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power of neither ITF nor dynamical similarity (such as it was) was affected.

5.2 Seizure Anticipation from EEG Recordings

Before applying the nonlinear methods under investigation in this paper to our data
set of 25 EEG recordings, we examined a representative signal from an intracranial
electrode for spectral and variance fluctuations on windows approximately 10 sec
in length. On several of the recordings, significant changes in the power spectrum
were observed prior to the first clinical seizure captured in the recording. When
these changes appeared to persist up to the time of seizure onset and were unique
in the interval before this time, we called the time from the change to the seizure
the “anticipation time”. As expected, overall changes in periodogram intensity, i.e.
total power, were found to correspond to increases in signal amplitude, reflected in an
increase in variance. Seizureless recordings made while the patient was asleep were
generally highly nonstationary, showing rapid changes in overall power. Recordings
made during sleep were relatively quiescent.

Both measures were computed on the entire set of EEG recordings using values for
the measure parameters cited by the method’s developers [44] in the case of dynamical
similarity and several combinations of values for ITF. Furthermore, the similarity was
calculated using each of two reference windows chosen on each recording (the same
segment for all channels) and, finally, crossed recordings and reference windows for
the same patient. Various thresholding schemes were then considered in identifying
“hot zones” on each TS.

For the similarity measure, various statistics concerning these hot zones, in par-
ticular longest and average anticipation times and numbers of active channels, were
calculated. Five of the 15 initial/isolated seizures were preceded by bound hot zones
in over 15% of iEEG channels. In all, eight of the seizures were preceded by bound
hot zones in no less than 4 channels. Awake recordings were found to contain the

greatest density of free hot zones.
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Comparing results obtained with each of the two RWs, we find that the similarity
measure is not symmetrical. That is, if RW1 produces a hot zone overlapping RW2,
RW2 will not necessarily yield a hot zone overlapping RW1. The projection onto
different bases explains this in part but also the variation in number of threshold
crossings in the RW. Nevertheless, the asymmetry is often weak. Furthermore, the
cross-recording results show that when a reference window on one recording from
a patient reveals preictal changes on that recording, it will often do so on other
recordings with seizures. This supports the claim that the RW in some way captures
the patient’s interictal dynamics.

No anticipation statistics were computed on the IIF results: the only convincing
preictal changes were on the amy recordings and there were many free hot zones
everywhere. Such nonspecificity in the threshold results is a consequence of the large
statistical fluctuation of the IIF measure; it seems impossible to detect a rise in in-
formation flow robustly without violating causality, i.e. using a noncausal smoothing
filter. Use of baseline statistics nonetheless resulted in fewer free hot zones than abso-
lute thresholds, with the awake recordings remaining relatively hot. The anticipation
results for spectral, similarity and information flow measures are summarized in Ta-
ble 5.1. The aim of this table is not to compare the performance of each measure in
anticipation, but rather to reflect the tendency of all the measures to anticipate the
same seizures to varying degrees on our data set.

The main conclusion to be drawn from these results is that the nonlinear measures
of dynamical change were sensitive to changes in the linear structure of the signals,
in the amysez and carlsez01 recordings especially, and that seizures that were not
preceded by such changes were not anticipated.

We find that the specificity of the similarity measure to preictal changes is higher
than that of IIF, because free hot zones are shorter and fewer in results obtained
with the former. Broadly speaking, the two measures show similar sensitivity to

these changes. In short, we conclude that there is no complementarity in the re-



Table 5.1: Summary of seizure anticipation results. Spectral times
are for the first iEEG signal; formal criteria were not used to obtain
these times, but rather they reflect our general impression of the
periodogram of that signal. On the contrary, the similarity results
are the earliest anticipation times from Table 3.1 using the formal
definition of bound hot zones presented in that chapter. The num-
ber of active channels is in parentheses. Asterisks in the [IF column
indicate bound hot zones in over ~ 20% of the channels preceded
by a relative absence of free hot zones.

Recording Spectral Similarity ImF
min  min (channels)

amysez01 30 23 (47) *
amysez(02 407 3(7)

amysez03 20 7(8) *
bobsez01 20 — —
bobsez(2 — — —
bobsez(3 5 — —
carlsez(1 15 26 (18) *
carlsez(2 — 7 (4) —
carlsez03 100 113 (15) —
dansez(1 — 10 (4) —
dansez02 20 9 (4) —
dansez03 — — —
evesez(1 — — —
evesez(2 — — —

evesez(3 — — —
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sults for the two measures which would allow us to improve anticipation performance

(sensitivity /specificity to preictal changes) by combining them.

5.3 Conclusion

In this thesis, two measures of dynamical change, one grounded in dynamical systems
theory and the other in information theory, were presented. We discussed the value
of “knowing one’s tools” before undertaking any form of analysis. This we have
endeavoured to do by first examining the response of these measures to inputs with
known properties and stationarity, inputs which were also qualitatively similar to the
real time series we ultimately wished to analyze. Significant differences in sensitivity
to difference degrees of chaos and variability on stationary data were found. These
observations guide us in our use of the measure on real data from human brains.

There is hardly any doubt that nonlinear processes play an important part in the
dynamics of the brain [47,55]; this is not to say that nonlinearity will necessarily be
detectable in EEG recordings. As for the role or even presence of certain specific
nonlinear phenomena in creating mind, particularly deterministic chaos, it would
appear that the jury is still out. Various methods of nonlinear time series analysis
have now been applied to the problem of detecting and characterizing changes in
brain dynamics prior to epileptic seizures, with several groups reporting evidence
that there is a discernible preictal period beginning at much as 20 minutes prior to a
seizure [45]. Measures of synchronization are yielding still longer anticipation times
as well as insight into the as yet poorly understood mechanisms underlying seizure
precursors.

With such encouraging findings in the literature, why do our results seem primarily
to reiterate what linear measures can already tell us about these EEG recordings?
Why does the specificity of these changes to preictal periods appear to be so low? One
simple reason is that seizures preceded by changes in linear measures have not been

actively excluded from previous studies and results obtained with linear measures



125

are not typically reported alongside the nonlinear results. As for specificity, it has
rarely been addressed anywhere but in the discussion section of papers, and there
only in passing. Our experiments were designed to probe these issues. The question
of correlation between results from linear and nonlinear measures is relevant and an
active subject of debate [53,56].

Recent results from Navarro et al. [59] (a collaboration between the group at Pitié-
Salpétriere and J. Gotman of the MNI) are a departure from earlier studies in that
the causes of observed preictal fluctuations in dynamical similarity are investigated.
Out of 51 seizures in that study, 31 were preceded by preictal changes in the measure
(bound hot zones) but of these only 7 were not also preceded by visually detectable
changes in the EEG. These results echo our own findings of about 50% detection
involving mostly seizures preceded by, for example, a change in signal strength. While
our investigation did not extend to visual examination of the EEG signals, we do feel
it is important to consider not just one but a well chosen battery of measures in
analysis of this sort, including linear measures. [68]

Those who suffer from severe epilepsy—approximately 1% of the population is
affected by this common neurological disease—must live in fear of their next seizure.
In the last 5-10 years, dynamicists have given us a glimpse of the real potential of
novel measures of dynamical change to anticipate epileptic seizures and to alleviate
this fear. Much work remains to be done before these methods will be useful in a
clinical setting, such as studies on longer and more varied data sets including data
from nonepileptic brains [49]. We have also seen that the behaviour of potential
measures on suitable artificial data can provide insight into the relevance and usage
of a given measure in a given setting. Lastly, increasing collaboration between research
groups will help to identify the relative strengths and weaknesses of potential methods

for seizure anticipation more rapidly and effectively.
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Appendix A

Elements of Information Theory

A.1 Introduction

Never before in history have people been as preoccupied with the role of information
in their lives. In the popular and scholarly press, much has been made in recent years
of the Information Revolution [5,21,54]. A common complaint of business people,
consumers and academics everywhere today is information overload [26]. Yesterday’s
software developer or computer salesperson is today’s “I'T specialist”, where I'T—
information technology—runs from computers to cell phones to the Internet. These
expressions speak to us because, among other reasons, we all have an intuitive grasp
of what information is. We all need it and want it, but not too much of it. We
understand that it can be transmitted and stored. We are increasingly adept at
“filtering out” much, even most of the information sent our way. Some information,
of course, has value and can even be bought and sold in our...information economy [6].

In light of all this, one might think that information theory was a product of the
social sciences, meant to illuminate our modern condition. Ironically, one of the funda-
mental questions answered by this theory seems designed to aggravate the problem of
“information overload”: what is the mazimum transmission rate of a communication
channel. It is of course a question of great practical importance. Shannon demon-
strated that, contrary to what was commonly believed in the early 1940’s, increasing

the transmission rate over a channel did not increase the probability of transmission
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error as long as the rate was below “channel capacity”, which is strictly a function of
the noise characteristics of the channel itself [76]. He also demonstrated that lossless
data compression was ultimately limited by the entropy of that data. The entropy
concept was a familiar one from thermodynamics and statistical mechanics [23, 69],
the entropy of a system being roughly speaking a measure of the disorder of that

system or the unpredictability of its state.

A.2 Information and the Entropies

In this overview, we will use the notation found in Cover and Thomas’ excellent
information theory primer [15]. Consider a data stream consisting of a string of
symbols, each a realization of a discrete random variable X. Let X denote the set
of N possible outcomes of X, called its alphabet. In discussing random variables,
we adopt the convention that upper case letters, e.g. X, refer to the variable itself
whereas lower case letters, e.g. x, refer to a specific realization of that variable, thus
x € X. We ask what is the degree of uncertainty in predicting the next symbol in the
sequence irrespective of previous outcomes, since it is this level of uncertainty which
limits compressibility.

Let p(z) denote the probability of the outcome z.! Shannon defines the informa-

tion content inherent in each outcome z as
I(z) = log p(x). Shannon information (A.1)

This definition forms the basis of information theory.? By defining information like

Tt should be clear that the probability mass function (pmf) will generally be
different for different random variables and that the notation p(x) implies the pmf of
the random variable X just as p(y) would imply that of a different variable Y. Where
there is a risk of confusion, we will use the explicit notation px(x). We might also
have used p(X = x), another common notation.

2A distinction emphasized in [37] is that between probabilistic information theory,
which will be our concern in this chapter, and algorithmic information theory. The
latter deals with the computational effort required to obtain/compute a given piece
of information.
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this—with the logarithm—Shannon bestows certain properties on it, such as posi-
tivity and additivity, as Brillouin® [13] and others [28] are quick to point out. The
joint probability pxy(x;y) of obtaining outcomes z and y of two independent random

variables X and Y is the product of their respective probabilities
Pxr(;Y) = pxl(T) - py(y). (statistical independence) (A.2)

By virtue of their independence, we require furthermore that the information in the
joint outcome be the sum of the information in each outcome separately. Thus we

take the logarithm of pxy (z;y),

I(z;y) =logpxy(z;y) = log(px(z) - py(y))
= logpx(z) +logpy(y)
= I(z)+1(y), (A.3)

which confirms that the Shannon information has this additive property. Any other
measure of information content must have these properties [28].

Taking the weighted average of this information over all possible outcomes yields
the Shannon entropy? of X,

H(X) == p(x)logp(z

zEX Shannon entropy (A.4)

= —(logp(z)) = =(I(2)),
where (-) denotes the expectation value. H is strictly positive, with a minimum of
zero when only one outcome x is possible, i.e. 2 occurs with probability 1.° In that

case, there is no uncertainly in the outcome of the event. The entropy reaches a

3Brillouin’s discussion of the connection between thermodynamics and information
theory in this work is fascinating. In addition to its origins and continued importance
in communications theory and intimate connection to physics, information theory
is strongly related to mathematics, probability theory, economics and computer sci-
ence. [15]

“The entropy is expressed in bits if log, is used, nats when In is used [15].

"We define plogp = 0 for p = 0.
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maximum when all outcomes are equiprobable, for then p(z) = 1/N for all x and
H =log N; the degree of uncertainty in our prediction is also a maximum.

Consider now a block of n consecutive symbols and represent this as a series of

n random variables X,,,..., X;. The probability of a given outcome, i.e. a given
sequence of n consecutive symbols, is written p(x,, ..., z1). The block entropy is then
defined as

H(X,,...,X;)=- Z p(Tn, ..., x1) log p(zn, ..., x1).

Ty ey 1 € X

block entropy (A.5)

The sum is taken over all N" possible sequences, those which are not allowed or simply
never occur being of measure zero. Lastly, if p(zniy|2Zy,..., 1) is the conditional

probability of observing outcome z,,,, after having already observed the consecutive

sequence Ti,...,T, a number r symbols earlier in the stream, then the conditional
entropy of the sequence of random variables X,,,,, X,,,..., Xy is
H( X Xy, X)) = — Z P(Tpir| T, -, 1) 10g D(Tpar|Thy ooy x1)-

Tn4ryTny-.y T1 € X

conditional entropy (A.6)

It corresponds to the uncertainty in the combined outcome of a set of events given
knowledge of the outcome of a subset of these events, a relation which is expressed

as follows:
H(Xpr| Xny ooy Xh) = HX iy Xy o, X)) — H(X,, .0, XY). (A.7)

This is the level of uncertainty in our prediction of the symbol r steps in the future

when we know the last n symbols. It is intuitively obvious that
0 < H(X,ir| Xn, ..., Xh) < HX,yr) = HX), (A.8)

which is to say that conditioning decreases entropy (Theorem 2.6.5 in [15]). Our
uncertainly in this case cannot be any greater than when we know nothing about the

past.



Appendix B

Elements of Probability Theory

For a thorough introduction to probability theory with plenty of insightful and his-
torically important examples, the reader may wish to consult the classic text by
Feller [24]. Probability and random variables are also given a clear introductory

treatment in Papoulis and Pillai [62].

B.1 Descriptions of a Probability Distribution

Let X = (Xy,...,X,) be a vector of continuous random variables defined on
R™. The distribution of X over this space is described by the probability density
function (PDF) p(X); that is, p(x) dx is the probability that a given realization
of X will fall in the infinitesimal volume element da centered on x.

The expectation value of a scalar function of this random vector f(X) is the
average value of that function over the space weighted by p(X) and is denoted by

angle brackets:

(X)) = / p(x) f(x) dz. (B.1)

The moments of the distribution are a particularly important example of expectation

values. Their definition is as follows:

My .q, = (XT" - XM, (B.2)
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where the sum of the exponents

Z%‘ =m (B.3)

is called the order of the moment. First-order moments (m = 1) are the familiar
weighted averages of each of the components of X. For n = 2, these would be denoted
My = (X X9) = (X;) and My = (X?X,) = (X;). Second-order moments (m = 2)
would be My, = (X?), My, = (X1 X5) and My = (X2). The above notation for
moments conveys their meaning with economy but it will be convenient to introduce

an alternative notation at this point. Given a moment of order m, we observe that

Mgy, = (X7 X07)

= ( Xy Xy Xy X))

q1 times qn times
= My, (B.4)

such that ¢; of the indices ¢; equal 1, ¢o equal 2, etc. for a total of m indices,
¢; € [1,n]¥i. In this new notation, the first order moments (expectation values
of individual components) of X where n = 2 would be M;; = M; = (X;) and
My = My = (X3). Second-order moments then become My = My, My = Moy
and My = My = (X1Xo) = (XoX;) = M. Note that in the new notation
permutation of the indices does not change the value of the moment.

The Fourier space representation of the distribution is called its characteristic

function with the definition

P(a) = (exp(ia- X)) = /d:np(a:) exp(ia - X), (B.5)

where a = (v, ..., ;). In the power series expansion of ¢ ()

2 jlottan)

D(ay,...,0p) = Z

q1,---,qn=0

gy My,..q,0f' - o, (B.6)

we see that, to within a constant factor, the coefficients are the moments of the

distribution. This shows that the distribution of X on its space of possible outcomes is
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completely described not only by p(X) but equally well by the characteristic function
® () or the infinite set of moments.
Taking the natural logarithm of the characteristic function, we obtain the cumu-

lant characteristic function,
V() =n®(a), (B.7)

the power series expansion of which can be written

o im n
¥(a) = Z ] Z N TARRRY T (B.8)

m=1 Tl ey =1
Here it is not moments which appear as coefficients but rather cumulants. The
same notation is used here an in (B.4)—order m cumulants have m indices each of
which has a value from 1 to n, designating one of the random variables in X—and
the same property of invariance under permutation of the indices holds. By virtue
of the defining relationship between the characteristic function and the cumulant
characteristic function (B.7) , the cumulants of order m can be expressed as a function
of the moments of order m and lower. If the average of each random variable in the
random process described by X is zero, (X;) = 0Vi € [1,n], then the following

expressions can be obtained for cumulants up to fourth order [4,27]:
Key = My, =0 (B.9
Kee, = Moy, (B.10

,CEIEZZ:’, = MZ1E2Z3 (B]_].

ICZ1€2€3€4 = M€132€3€4 - M€1€2M€3€4 - M€1€3Mlzf4 - M€1€4M€2€3 (B'12

B.2 Expressions of Statistical Independence

The concept of statistical independence is fundamental to probability theory. The

joint probability density p(X,Y") of two random processes X and Y with probability
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density functions p(X) and p(Y') respectively will satisfy the relation

p(z,y) =p()  p(y) (B.13)

only if the two processes are independent. From the definitions (B.5) and (B.7), it is
easily demonstrated that if (B.13) is true then the relations between the characteristic

functions

P(ay, ay) =P(ay) - P(ay) (B.14)
and between the cumulant characteristic functions

U(ax,ay) = V(ax) + ¥(ay) (B.15)

are also satisfied. A consequence of this last relation is that all cumulants of the joint
process simultaneously involving at least one random variable from both X and Y
must equal zero. Since this consequence is the basis of the information flow measure
defined in §4.2, we will reiterate it more formally. Let the integers 1 through n desig-
nate the n random variables in the vector X and n+ 1 through n+n' the n' random
variables in Y. If the random processes described by X and Y are statistically in-
dependent, then the following condition will be satified by the cumulants of the joint

process:

Keyor,, =0 if 34, €[l,n] and 3¢ € [n+1,n+n'],

where 4,7 € [1,m] and i # j. (B.16)



Appendix C

Coupling Matrix Studies of the
Bondarenko Model

The asymmetric analogue neural network model with delays presented in §2.1.1 was
chosen to generate the synthetic time series for some of our experiments for two
reasons. It was known to have chaotic solutions which were qualitatively similar to
EEG signals. Secondly, the chaoticity or degree of chaos, as reflected in the maximal
Lyapunov exponent, had been shown to be an increasing function of what we have
called the global coupling strength c. Our expectations of the model were based on
a series of papers by V. Bondarenko [7-11]. These same properties of the solutions
prompted Hively, Gailey and Protopopescu to test a different set of measures for
detection of dynamical change in scalp EEG signals on data from this model [32]. So
when values of ¢ that should have produced chaos gave fixed point or quasiperiodic
solutions instead, we got worried.

Our main reference for Bondarenko’s work was [8], not his earliest paper on the
topic. When (at his suggestion) we took a look at this 1994 article, we found that a
dependence of the type of solution on the realization of the coupling matrix had been
observed. For given values of ¢, M(number of neurons) and 7(delay), the spectra
and correlation dimension depend on the coupling matrix realization [12]. Finally,
different initial conditions produced different solutions for the same matrix. In his

experiments, Bondarenko ensured convergence [12] to the same attractor for all re-
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alizations of the coupling matrix by choosing his initial conditions randomly from a
uniform distribution on [—1 x 1075 +1 x 10~°°], which he describes in [8] as “small
random values”. Small indeed. We, on the other hand, used random deviates on
[—2,+2] for both the matrix elements and initial conditions, as did Hively and his
collaborators.

Once we were confident that the nonchaotic solutions were not the result of a bug
in our program, we asked the question: what conditions on the coupling matrix, if
any, assure us that the chaotic solution will be the stable one? Marcus and West-
ervelt had studied the stability of random symmetric analogue neural networks with
delay [51]. Sompolinsky, Crisanti and Sommers had used mean field theory to analyze
random asymmetric neural networks without delay [79]. We know of no analytical
results, however, for asymmetrical random coupling with delay. What follows is a
brief numerical exploration of different aspects of the problem.

For the symmetric case, Marcus and Westervelt obtain a delay-dependent expres-
sion for the “regions of stability” in the complex plane within which all the eigenvalues
of the coupling matrix (the “connection eigenvalues”) must fall for the network not to
oscillate. We undertook to examine the relationship between the connection eigenval-
ues of different matrices and the type of solution obtained with a given matrix using
the Bondarenko model. The spectrum of large random fully asymmetric matrices is
known to be uniform on a circle in the complex plane [78]. It was conceivable that
on this circle, the eigenvalues of matrices producing chaos would fall in a discernible
region.

To test this hypothesis, a routine was devised for automatically classifying the
output of the network. 1688 separate realizations of the network were classified using
this scheme. An M = 10 neuron network (¢ = 3, e = 0, 7 = 10) was used, always
with the same initial conditions on the neurons but with a different coupling matrix
each time. The matrix was output and its eigenvalues computed [66]. For each

initialization of the network, the procedure for estimating the maximal Lyapunov
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exponent described in §2.1.4.1 was followed except that: a) a transient of 3000 atu
was skipped, b) the ratio §,/dy was stored only up to n = 1500 and finally c¢) the
value of 4, /0y was averaged over three rather than 50 runs. Two straight lines were
then fit to In(d,/dg) vs. n, one on n € [200,800] and the other on n € [1000, 1500].
Let m; and msy denote the slope of these two lines respectively, b; and by their
respective intercepts and Amy, Amsy, Ab; and Aby the errors in these quantities
returned by the curve fitting routine. The following criteria were used, in the given

order, to classify the results:
1. Chaotic, if

(a) mq > 0.005 and

(b) Amy < 0.0009.

A positive slope with small error implies linear scaling region in In(d,,/dy) vs. n

plot and thus exponential growth in distance between trajectories.
2. Quasiperiodic, if

(a) my < 0.005 and
(b) mg < 0.005 and
(C) |b2 — bl| < 2 and

(d) Aby > 0.1.

For this type of solution, we expect no overall increase in the separation but

some fluctuation (hence the non-zero Aby).
3. Fized point, if

(a) |m2| < 0.000001 and

(b) Aby < 0.001

A fixed point solution will yield both very flat lines and very little fluctuation.
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4. otherwise uncertain.

The numerical values used in the various inequalities above were selected on the basis
of visual inspection of the results for about 50-100 matrices.

Of the 1688 runs completed, 55% were identified as chaotic, 36% quasiperiodic,
5.5% fixed point and 3.6% uncertain. These results allow us to plot, in Fig. C.1, the
connection eigenvalues of these matrices colour coded by type of solution obtained.
A fairly uniform distribution on a circle is observed for all solution types; there are
no discernible stable or chaotic regions. The deviations from a perfectly uniform
distribution, in particular the high concentration of eigenvalues on the real axis, are
a consequence of the finite dimensions of the matrix [51].

The next question we asked was whether a given realization of the coupling matrix
would always yield the same type of solution for different sets of initial conditions.
For each of 100 different realizations of the matrix, the long-term behaviour of the
system was classified using the same scheme described above with 20 different sets of
initial conditions, obtained by seeding the RNG for these random values differently.
The same 20 sets of initial conditions were used for each coupling matrix (the same 20
seeds were used). Averaging over the results for all 100 matrices, we found that 55%
of solutions were chaotic (SD 4%), 35% were quasiperiodic (SD 4%) and 6% were fixed
point (SD 3%). 3% could not be classified (SD 2%). The type of solution obtained
for each combination of coupling matrix and set of initial conditions is presented in
Fig. C.2.

What is most striking about the results of these two experiments is the similarity
in the proportion of each type of solution found. This suggests that for any given
realization of the coupling matrix and set of initial conditions, there is about a 50/50
chance that the long-term behaviour of the network will be chaotic and that there
is no way of determining on the basis of the coupling eigenvalues alone what that
behaviour will be. We should point out that the matrix “Realization 1”7 was used to

generate our artificial TSs. We see that for all 20 seed values, this particular matrix
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Figure C.1: Connection eigenvalues of different realizations of Bondarenko model coupling

matrix, colour coded by solution obtained: red for chaotic, blue for quasiperiodic, green

for fixed point. Green points are more prominent on the real axis only because they were

plotted last; the distribution of all solution types peaks strongly on this axis.
8 T T T T T T T
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Figure C.2: For each combination of coupling matrix and seed for the initial conditions the
type of solution obtained is indicated by a symbol: squares for chaos, crosses for quasiperi-
odicity, dots for fixed points. Where the behaviour could not be classified automatically,
the space is left blank.
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yields chaos. It happens to do so for seed values 21 through 25 as well, so that all
the TSs in our data set for ¢ = 3 were chaotic. For other values of the measure
parameters, the TSs were inspected to ensure that a nonchaotic solution had not

slipped in.



Appendix D

Gap Cataloguing Algorithm

Since fluctuations of the measures studied in the preceding chapters are ignored on
what we call “gaps” in the EEG recordings, the algorithm used for automatic detec-
tion of these gaps could have some bearing on our results. As it turns out, in our data
set, gaps seldom occur prior to the first clinical seizure on recordings which capture
such seizures, which is the interval of most concern in our analyses.

The sequence of “zeroes” which we call a gap does not always begin and end at
exactly the same time in every channel of the recording. This algorithm is designed
to catalogue the earliest start time of the gap on the first five channels and the latest
end time. There are two main steps to the algorithm: gaps on each channel are first
identified and then the start and end times of these gaps are compared to those found
on previous signals in order to keep the earliest and latest times respectively.

Each of the first five channels of data from the recording is scanned for intervals
satisfying three criteria: (1) consecutive samples on the interval differ by no more
than Az, (2) the absolute difference between the maximum and minimum values on
the interval is no greater than Az and (3) the interval is at least At samples long.
This approach was used because the “zeroes” filling the gap were not identically
equal to zero or even strictly constant, which is presumably a consequence of signal
digitization. The lower limit on duration prevents identification as gaps of intervals
on which the signal is simply varying slowly. We used values of Az = 10.0 mV
and At = 200 samples (i.e. 1 sec). The location of the beginning and end of every
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interval is flagged with “start” and “end” markers on a “timeline” the same length
as the recording, N samples.

After the candidate intervals have been logged for each signal, the timeline is
scanned forward to the first “start” marker. From that point, we scan to the nearest
“end” marker, erasing all intervening “start” markers. This procedure is repeated
until only the first “start” in each unbroken sequence of “start” markers remains.
Moving backwards along the timeline, the same procedure retains only the latest
“end” in each unbroken series of “end” markers. After all five channels have been
considered, the number of remaining “start” markers is logged as the number of gaps
and the start and end of each gap recorded as the positions of consecutive pairs of
“start” and “end” markers on the timeline.

A formal description of this algorithm (almost an implementation, really) is pre-
sented below. We note that it is similar in many respects to the algorithm used for

logging hot zones with respect to the dynamical similarity measure.

Gap cataloguing algorithm:
for all 7 such that 1 <i < N do

for each of the first m signals in a multichannel recording do
Read the signal into the vector & = (z1,...,zy)
qg<+0

for i =2 to N do
if |LEZ — l‘i_1| < Az then
if ¢ > 0 then
if x; > xpax then
Tmax < T4
if x; < 2y, then
Tmin < T;
else
Tmin < T;
Tmax < T4
qg+—1—1
else
if ¢ > 0 then
if |Tmax — Tmin| < Az and i — ¢ > At then
gq 1
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giy1 < —1
g+ 0
g+ 0
for 2=1to N do
if g, =1 then
if ¢ =1 then
gi <0
else
g+ 1
else
if g, = —1 and ¢ =1 then
g+ 0
g+ 0
for .= N to 1 do
if g, = —1 then
if ¢ =1 then
gi <0
else
qg<+1
else
if g =1and ¢ =1 then
g+ 0
Output number of g; which satisfy g; = 1 (number of gaps)
141
while : < N do
if g; =1 then
Output 7 (gap start)
while g; # —1 and i < N do
1 1+1
Output i (gap end)
1 1+1



